
Overture Technical Report Series
No. TR-006

September 2013

Development Process of Distributed Embedded Systems
using VDM

by

Peter Gorm Larsen and Sune Wolff
Department of Engineering, Aarhus University
Finlandsgade 22, DK-8200 Århus N, Denmark

Nick Battle
Fujitsu Services

Lovelace Road, Bracknell,
Berkshire. RG12 8SN, UK

John Fitzgerald and Kenneth Pierce
School of Computing Science

Newcastle University
UK

Overture – Open-source Tools for Formal Modelling

Document history
Month Year Version Version of Overture.exe
April 2010 0.2
May 2010 1 0.2
February 2011 2 1.0.0
September 2013 3 2.0.0

Contents

3

Preface

This document is intended to provide readers who already have experience with general VDM
concepts from language manuals [?] or books [?] and/or courses and it is also assumed that the
reader has general knowledge about concepts using for concurrent systems [?, ?, ?, ?, ?]. From a
tool perspective it is also assumed that the readers are already familiar with the basic functionality
from Overture (http://www.overturetool.org) and a UML tool such as Modelio (www.
modelio.org).

VDM [?, ?, ?, ?] is a formal method [?, ?, ?] and these are characterized by being able to ex-
press things in an abstract fashion and having a precise semantics for the models produced in these
languages. Three different dialects exists for VDM; VDM-SL, VDM++ and VDM-RT [?]. Some
of these methods include methodological steps of getting from a very abstract model to a more
concrete model. This process is typically referred to as refinement [?,?,?,?] when formal relation-
ships are included between the different models. In this document no claims are made between the
different models so no formal refinement will be included.

This document is structured such that all readers with advantage can read the introduction in
Chapter ?? first. In case the reader have limited experience and knowledge about synchronization
of concurrent systems it may be an advantage then to just to Chapter ?? to get more knowledge
about that before proceeding with the main process guidelines for the development of real-time
systems in Chapter ??. The process is followed by a major example that is developed according to
the guidelines presented in Chapter ??. Understanding that requires knowledge about both VDM
and general concurrency principles. All the different models for the example used in this document
are also available on-line from www.vdmbook.com so it is possible for the reader to get hands-on
experience with them.

In Chapter ?? periodic threads and statically schedulable systems are treated. Chapter ?? pro-
vides insight into the scheduling principles that can be used for the execution of concurrent and for
distributed VDM-RT models in Overture. In Chapter ?? it is presented how post-execution analy-
sis can be made of timed logfiles produced by Overture during execution of a scenario (primarily
using the RealTime Log Viewer). Finally, Chapter ?? rounds off the document with a postscript
indicating what the reader should have obtained at this point.

5

http://www.overturetool.org
www.modelio.org
www.modelio.org
www.vdmbook.com

Chapter 1

Introduction

This document describes the envisaged process by which reactive distributed embedded real-time
systems could be developed using Overture. In particular, the document describes how key fea-
tures of real-time systems can be modelled and analyzed using tool support. In this document the
main focus is on the different activities performed during the analysis and design phases of the
development process. Thus, the implementation phase of the traditional waterfall life cycle [?] is
not dealt with in detail in this document. However, the use of Overture does not require the use of
the waterfall life cycle and thus parts of the guidelines can be selected on a needs basis.

1.1 Characteristics of Reactive Real-Time Systems

Reactive real-time systems possess a number of unique characteristics which means that conven-
tional (formal and informal) approaches to modelling and analysis are inadequate. That is, in
addition to conventional functional correctness (correctness of computed values), other factors can
influence whether the software is defined in such a way that the overall system performs correctly,
and are therefore challenges to the system developer. These challenges are a result of the reactive,
concurrent and real-time nature of such systems, so the challenges intrinsic to each of these kinds
of system are described. Often it is simply not possible to check whether a system design will be
adequate before it is fully implemented and operating in its real environment. For a number of
critical systems this is unacceptably late and this document describes how one can get a higher
level of confidence in the correctness of a design using Overture.

1.1.1 Challenges of Reactive Systems

Reactive systems are often closed loop systems. That is, they typically repeatedly take data from
sensors and compute commands for actuators based on this data. The behaviour of the actuators
then influences the values read by the sensors. In order to appropriately model this feedback loop
one needs to have an accurate model of the environment in order to be able to validate that the
system will work correctly in its expected environment. Moreover reactive systems are typically

7

non-terminating, so traditional formal methods approaches dealing with total correctness (formal
proof of an algorithm always satisfying certain formally defined conditions) are not appropriate.

Modelling the environment behaviour may not be convenient in a discrete event formalism
such as VDM. Often a detailed description of physical world entities are more conveniently created
using different bases in mathematics such as differential equations. Thus, in case the fidelity of
the requirements are sufficiently high it will be optimal to have the environment (the physical
system to be controlled) and the system to be developed (the controller of the physical system) be
described in different formalisms which can be combined for example using co-simulation [?, ?].
However in this document the environment will be modelled using VDM for simplicity reasons.
We will also discuss under which circumstances a multi-disciplinary models will be advantagous.
The DESTECS (Design Support and Tooling for Embedded Control Software) project (http:
//www.destecs.org) was targeted explicitly at this combination and thus complementary
methodology documentation came out of that project (and its tool support is now called Crescendo.

Reactive systems need to be able to cope with random events that might occur in the environ-
ment. This means that the modelling of the environment need to incorporate sporadic events. The
challenge here is also to be able to handle all possible ways in which the environment can behave,
and appropriately document the assumptions made about this behaviour. For critical applications
the handling of erroneous situations typically take up the majority of the effort in the development
of an appropriate controller.

1.1.2 Challenges of Concurrency
The correctness of a concurrent system can often be dependent on the kind of scheduling algorithm
used, and the manner in which the scheduling algorithm is used. In order to be able to predict
whether a particular design will work correctly for different scenarios one needs to take scheduling
into account. In addition to scheduling the mastering of synchronisation between different threads
adds to the complexity of concurrency.

1.1.3 Challenges of Real-Time
Real-time systems sometimes need to meet hard deadlines. That is, failure to meet a deadline
could lead to the system’s mission being compromised. Any kind of analysis which can indicate
scenarios where such deadlines cannot be met is extremely valuable. Typically, the performance
of a small portion of the system can critically affect the ability of the system to meet its deadlines.
Such portions are referred to as bottlenecks. The earlier potential bottlenecks can be pinpointed
the better.

Real-time systems often need to meet soft deadlines. That is, deadlines which, if met late, will
not cause system failure, but persistent lateness could cause degraded performance. Detection of
this is similar to the hard deadlines above; the value of this is necessarily smaller but still important.

Real-Time systems need to be able to cope with periodic events which do not occur perfectly
periodically. This is called jitter and the acceptable level for this is dependent upon the different
design decisions made.

http://www.destecs.org
http://www.destecs.org

– 9 –

1.1.4 Challenges of Distribution
From a system perspective it is often advantageous to structure an embedded system on a number
of processors. A part of the distribution of functionality to be performed by such a system is more
or less determined by the physical structure of the system and its interaction with the environ-
ment. However, for a significant portion of the desired functionality the system architect have a
challenging task determining how to allocate different parts of the functionality to different com-
putation units. It requires a lot of skill to become convinced about the chosen architecture living
up to different kinds of timing requirements with a given collection of processors with physical
characteristics for example in the form of speed and memory.

In order to find an optimal system architecture it is an advantage to experiment with com-
monly used scenarios with different combinations of different processors and different allocations
of functionality to these processors. The development guidelines presented in this document aims
to provide an ability for carrying out such experiments early in the life-cycle without having to
invest in the real hardware with different capabilities for processor speeds. Naturally it is still just
a model but it is taking the speed of the processors and the bus capacities into account so it should
at least be able to provide pretty good guidance about an optimal system architecture. The things
that are left out of the modelling here are memory and optimisation techniques such as caching
and pipelining.

1.2 Overview of VDM and its tool support
In this section we give a brief description of those features of VDM dialects specifically suited to
modelling real-time systems and deployment to multiple processors. A more substantial overview
of the VDM languages can be found in [?].

VDM++ is a model-based object-oriented specification language. It permits description of
concurrent models by using threads. Real-time behaviour of models can be analyzed dynamically.
A VDM++ model is organized as a collection of classes. A class may contain values, types,
instance variables, functions and operations. Note that functions are not allowed to read or write
instance variables, whereas operations are.

Overture is a tool suite which support amongst other things, static analysis of models (syntax
and type checking), and execution of models with dynamic type analysis (invariant checking, pre-
and post-condition checking). In addition Overture and VDMTools have features enabling users
to move back and forth between a graphical UML view and a textual detailed VDM++ view. As
described in [?], this allows the complementary benefits of UML and VDM to be exploited.

A variety of scheduling algorithms are supported by Overture, and during model execution,
information on the real-time behaviour of the model is accumulated for post-execution analysis.
More details of how Overture facilitates timing analysis is given in Section ??. For post-execution
analysis there is also a feature in Overture called RealTime Log Viewer that may be used. More
details will be provided about that in Chapter ??.

We now describe four key features of VDM-RT used when modelling real-time systems:

1. threads,

2. duration and cycles statements,

3. system and environment and

4. deployments.

1.2.1 Threads
A thread is an entity within a class. It is used to model independent behaviour. That is, a thread
represents activity within a system, whereas a class without a thread is more akin to a server,
passively responding to requests. Thus when a class containing a thread definition is instantiated,
a thread is created. However this thread may only be scheduled when it is explicitly started using
a VDM++ start statement. Consider the following example where a class A has a thread that is
started inside an operation called op in a class called B:

�
class A

instance variables
i : nat := 0

thread
while i < 10 do

i := i + 1

end A
� �

�
class B

operations

op : () ==> ()
op() ==
(dcl a : A := new A();

start(a)
)
end B
� �

In this example, the thread for object a will not be available for scheduling until the statement
start(a) has been executed.

Threads may be either procedural or periodic. A procedural thread is simply a statement (as
the while loop in the above example), which is executed to completion subject to scheduling and
descheduling. A periodic thread has the form�
periodic (period,jitter,delay,offset) (operation)
� �

A periodic thread is started in the same way as a procedural thread, using a start statement.
The operation stated in the thread declaration is then executed repeatedly, with frequency deter-
mined by period. If jitter is allowed it means that the period is not perfectly periodic, but
may vary with the amount of jitter before and after the ideal periodic time. If there is a minimal
arrival time between two periodic event that is indicated by the delay parameter. Finally, in case
the periodic occurrence should not start right when the periodic thread is started it is possible to
use the offset parameter to describe that. Examples of all of this will follow.

Being a bit more precise we can consider Figure ?? and state that:

• period is a non-negative, non-zero value that describes the length of the time interval be-
tween two adjacent events in a strictly periodic event stream (where jitter = 0)

– 11 –

• jitter is a non-negative value that describes the amount of time variance that is allowed
around a single event. We assume that the interval is balanced [−j, j]. Note that jitter is
allowed to be bigger than the period to characterize so-called event bursts.

• delay is a non-negative value smaller than the period which is used to denote the minimum
inter arrival distance between two adjacent events.

• offset is a non-negative value which is used to denote the absolute time value at which
the first period of the event stream starts. Note that the first event occurs in the interval
[offset, offset + jitter].

Figure 1.1: Example of a periodic event stream with a (p, j, d, o)-tuple

Communication between threads is based on shared objects. Thus a synchronization mecha-
nism is necessary to ensure integrity of shared objects. This mechanism is described in Chapter ??.

1.2.2 Duration and Cycles Statements

A duration statement is a VDM-RT statement that allows a fixed estimate to be placed on the
execution time of a particular portion of a model. A duration statement has the form�
duration (t) statement
� �

This means that statement is estimated to take t nanoseconds to execute. This information
is used for accumulation of real-time behaviour; details of this accumulation, and the manner in
which time is to be interpreted are described in Section ?? below. Otherwise the duration statement
has the exact functional effect of its body statement.

A cycles statement is a VDM-RT statement that allows a relative estimate to be placed on the
execution of a particular portion of a model relative to the CPU it is allocated to (deployed). A
cycles statement has the form�
cycles (instruction cycles) statement
� �

This means that statement is estimated to take instruction cycles to execute on any platform.
Thus, if a processor with double processor speed is chosen it will take half the time. This in-
formation is used for accumulation of real-time behaviour; details of this accumulation, and the
manner in which time is to be interpreted are described in Section ?? below. Otherwise the cycles
statement has the exact functional effect of its body statement.

1.2.3 The System and the Environment
In order to be able to describe distributed systems in VDM++ includes a notion of a system that
describes how different parts of the system modelled are deployed to different Central Processing
Units (CPU’s) and communication BUS’es connecting the CPU’s together. Syntactically the sys-
tem is described exactly like ordinary classes, except that the keyword “system” instead of the
keyword “class”.

The special thing about the system is that it can make use of special implicitly defined classes
called CPU and BUS. It is not possible to create instances of the system, but instances made of CPU
and BUS will be created at initialisation time. Note that CPU and BUS cannot be used outside the
system definition.

The instances of CPU and BUS must be made as instance variables and the definition must use
constructors. The constructor for the CPU class takes two parameters: the first one indicate the
primary scheduling policy used for the CPU whereas the second parameter provides the capacity
of the CPU (indicated as number of instructions Per Second or Hz - NB. the step size of time is 1
nanosecond). The constructor for the BUS class takes three parameters. The first one indicates the
kind of bus, the second one the capacity of the bus (its band width in bytes per second) and finally
the third parameter gives a set of CPU instances connected together by the given BUS instance.

The currently supported primary scheduling policies for the CPU are:

<FP>: Fixed Priority. If this scheduling policy is used the cpu scheduler will examine the threads
with the highest priority first to see if they are ready to be executed or they are blocked for
some reason (a synchronisation constraint or by an operation call on a different cpu).

<FCFS>: First Come First Served. If this scheduling policy is used the cpu scheduler will always
swap between threads in a round-robin fashion starting with the first one created. Each thread
will be allowed to continue its execution for a time limit (decided by the user) before the
next thread is examined. In this way fairness will be ensured at normal cpus but for threads
running at the virtual cpu (where time is not incremeneted based on instruction execution)
no fairness is ensured since ian infinite loop here may take over the entire execution.

The currently supported primary scheduling policies for the BUS are (however, in this version
all of them are treated as FCFS):

<FCFS>: First Come First Served

Note that the principles used for describing the system to be developed using the VDM technol-
ogy may be copied for the environment as well. This means that it is possible to use the “system”

– 13 –

keyword also for the environment as a whole and thus be able to accurately describe the interaction
between the system and its environment. In case this is not done virtual processors (CPU’s) and
a virtual communication channel (a BUS) are established for each of the environment instances
created inside the special class “World” that describe the composition of systems.

1.2.4 Deployments

The CPU class has member operations called deploy and setPriority. The deploy opera-
tion takes one parameter which must be an object that is declared as a static instance variable inside
the system. The semantics of the deploy operation is that execution of all functionality inside this
object will take place on the CPU that it has been deployed to. The setPriority operation
takes two parameters where the first must be the name of a public operation that has been deployed
to the CPU and the second parameter is a natural number. The semantics of the setPriority
operation is that the given operation is assigned the given priority (the second parameter). This will
be used when fixed priority scheduling is used on the given CPU. For operations that are used on a
CPU using fixed priority scheduling that has not been assigned a value using the setPriority
operation a default priority of 1 is assigned to it. The same holds for normal theads in active
classes.

1.3 Timing Analysis

The objective when performing timing analysis using Overture is to identify potential performance
bottlenecks. That is, to identify those portions of the model that could cause scheduling problems
and/or failure to meet deadlines. This allows the feasibility of a particular dynamic architecture to
be examined. A dynamic architecture is a design which has been decomposed into a number of
processes or threads onto a number of processors.

Note that checking timing assertions (desirable timing properties expressed formally) during
run-time is neither an objective of the intended timing analysis, nor feasible within the framework
described. Moreover it is not an objective to formally verify correct behaviour with respect to
timing requirements.

The above objective is dependent upon the target execution architecture, and also the real-time
kernel which will be used (as this dictates the scheduling policy to be used). To support the above
objective Overture aims to simulate the target execution environment. The target environment is
the system itself allocated to different processors and connected with BUS’es as well as the envi-
ronment that itself may be considered as a system. That is, it approximates the timing properties of
the target processors, the BUS’es connecting them and emulates the scheduling policy to be used
by the real-time kernel on each processor.

With respect to timing behaviour, Overture simulates the time of the target processors. That
is, during execution the interpreter maintains an internal variable which corresponds to the clock
of the target processors, i.e. the clock of the target processors will be simulated. The interpreter
will adopt the same scheduling algorithm as that intended for the different distributed processors

Model
Enhanced
With
Durations

Task
Switching
Overhead

Overture

Default
Duration
Informa-
tion

Timed
Trace In-
formation

Trace
Analysis

?

?

?

- �

Figure 1.2: Approach to Timing Analysis

in the final system. During execution of the model a number of events will occur in parallel for the
different processors:

• Swapping in and out of threads;

• Operation requests, activations and completions;

• Messages being communicated between processes on busses.

We call such events, trace events. During execution all trace events are recorded, time stamped
with the simulated time at which they occurred.

Four sources of timing information are used during execution:

Model enhanced with cycles and durations: When executing a portion of the VDM model which
falls under the scope of a duration or a cycles statement, the internal clock is incremented by
the given duration/number of clock cycles at the completion of the statement. Note that the
durations are absolute in time whereas the cycles are relative to the speed of the processor
on which it is executed.

– 15 –

Task switching overhead: A task switching overhead can be defined, to correspond to the task
switching overhead for the intended real-time kernel.

Default cycles information: For those portions of the model not in the scope of an explicit dura-
tion or cycles statement, conventional worst-case analysis is used. However it is parametrized
in terms of the time taken to perform elementary assembly instructions without taking pos-
sibly optimisation techniques such as cache and pipelining into account. The user can then
define the time for these assembly instructions, for the intended target processor. We call
this mapping from assembly instructions to execution time on the target processor, the de-
fault cycles information.

Capacity of CPU’s and BUS’es: If a distributed system is modelled the capacity of the CPU’s and
the BUS’es used in the interpretation of scenarios of the system

An overview of the approach is shown in Figure ??. Overture takes the three sources of timing
information listed above, and uses this information when executing a model. During execution a
timed trace file is created, containing time stamped trace events listed in the order of occurrence.
Since this is just a plain text file, it may be analyzed separately.

1.4 Structure of document
After this short introduction to reactive systems, VDM and timing analysis this document proceeds
in Chapter ?? with a relatively short description of the envisaged development process for real-time
systems using Overture. As mentioned above, this document focuses on the different activities in
the analysis and design phases in order to be able to get feedback on the timing properties of
suggested designs before they are carried into the final implementation. After this general presen-
tation of the design process a substantial example development following this process is presented
in Chapter ??. Chapter ?? makes forward references to the appropriate parts in Chapter ??. The
example used for illustrating the development process in Chapter ?? is a missile counter measures
system.

Then a series of chapters follows with more reference material about how different aspects of
reactive systems can be modelled using the Overture technology for real-time systems. Chapter ??
explains how synchronization is ensured in VDM++. In Chapter ?? modelling of periodic systems
and events is explained. In Chapter ?? the scheduling policy supported by the Overture technology
is presented. Finally in Chapter ?? it is illustrated what kind of post-execution trace analysis can
be performed using Overture including calibration of the timing results. In Chapter ?? there are a
number of forward references to some of the reference chapters. Readers who are unfamiliar with
the kind of material may therefore benefit from jumping to the reference explanations when such
references are made.

The Appendices include a glossary (Appendix ??), a few design patterns useful for real-time
systems (Appendix ??) and finally a full listing of all the examples (Appendix ??).

Chapter 2

Development Process For Real-Time
Systems

In this chapter we give an overview of the proposed development process for real-time systems. As
mentioned in Chapter ?? the focus of the development process presented here is on the activities
in the system analysis and design phases.

In Figure ?? an overview of the different phases we touch upon in this chapter is presented.
This is the traditional V-life cycle used by many industrial organizations as an approximation of
what goes on in reality (with iterations and feedback between phases). This structuring in phases
may be used either with a traditional waterfall process model or for each iteration using Boehm’s
spiral model [?, ?]. The difference is mainly that in the spiral process model the artifacts with
the highest risk will be analyzed first, and this would have the consequence that in the process
we describe below one would abstract away from parts which does not have any impact on the
analysis needed to mitigate the highest risks. The green arrows in the figure indicate the primary
flow of information (and in this case VDM models) whereas the purple (vertical) lines indicate that
the tests conducted at the development phases (using models) may be reused at the corresponding
acceptance test level.

The development process will normally begin with analyzing the informal requirements and
capturing these to form a design-independent specification of the system to be developed. Based
on this description one needs to structure the system into a static architecture and create a se-
quential VDM++ design model of the system. This model would then be extended to become a
concurrent VDM++ design model. The concurrent design model itself is then extended with real-
time information. At this stage it may prove necessary to revisit the concurrent design model, as it
may be that design decisions made at that stage prove to be infeasible when real-time information
is added to the model (for instance, the model may not be able to meet its deadlines). From the
concurrent and distributed real-time VDM-RT design model an implementation may be developed.
Testing of the final implementation (and the different design-oriented models) may be able to use
the most abstract model as a test oracle. We return to the different test phases in Section ??.

When developing a model of a real-time system, it is typically difficult to separate the system
from the environment in which it is executing, and with which it interacts. Therefore it is often the

17

Figure 2.1: Overview of Development Process

Figure 2.2: Overview of the input/output relationship for requirements capture

case that all the relevant parts of the environment are also modelled.

2.1 Requirements Capture
The first phase of a system development process is to capture the requirements of the new system.
This phase is also called the system analysis phase or the specification phase depending upon the
different company standards. We recommend that this stage be performed in either UML or by
using VDM-SL. For both approaches, the starting point is the informal requirements, and the end
point is a specification of the requirements to the system, which is independent of any design
concerns, as shown in Figure ??. In the Model Driven Architecture (MDA) [?] terminology this is
called a Platform Independent Model (PIM).

Both approaches are described in the sequel. In Section ?? a conventional UML [?] approach

– 19 –

Figure 2.3: General use case for embedded systems

is described, in which use-cases are created and discussed with clients and users. This approach is
illustrated with the counter measures example in Section ??.

Alternatively a flat VDM-SL model, and a Graphical User Interface (GUI) connected to this
model to allow users and clients to interact with the animated model could be created (in a similar
manner to that described in [?]). This approach is described in Section ?? and illustrated with the
counter measures example in Section ??.

2.1.1 Capturing Requirements with UML Use Cases
In this Section it is described how requirements may be captured using UML use case diagrams [?].
The presentation assumes that the tool Rational Rose [?] or the tool Enterprice Architect is used,
but other UML tools have similar functionality. An example of this analysis is given in Section ??

Find the actors and use cases

• Identify the frontiers of the system and their principal functionality.

• Identify the actors in the system. The actors may be equipment, users or the system environ-
ment.

• Identify use cases.

• Summarize the role of each actor and the goal of each use case.

• Arrange the actors and use cases into related packages.

Figure 2.4: General Sequence Diagram for an Embedded System

• Describe the use cases using use case diagrams (in Figure ?? such an example is shown).

• Describe the states of the system using a state transition diagram.

Structure the use case model

• Define the relation <<includes>> between use cases (e.g. in Figure ??).

• Define the relation <<extend>> between use cases.

• Define the generalization relation between use cases.

• Define the generalization relation between actors.

These stereotypes are defined in the UML 2.0 standard [?].

Specify the use cases in detail

For each use case

• Detail the interaction between the actors and the system.

– 21 –

Figure 2.5: General Activity Diagram for an Embedded System

• Structure the interactions between the actors and the system. Note that normal sequences of
actions should be distinguished from abnormal sequences of actions (e.g. exceptional cases,
degraded cases, failure cases etc).

• A use case could perhaps be associated with a user interface that is already defined. This
aspect should not be developed with particular concern to the human-computer interface, but
it is useful to represent this interface with the description facilities of the use case.

• If useful, all the exit scenarios of a use case can be specified. The difference between a use
case and an associated scenario is that a scenario is an instance of a use case.

• Illustrate each use case or scenario:

Using a sequence diagram: At this stage the system in question is not yet divided into
classes so such sequence diagrams will only show the flow of control between the
actors and the system. In version 2.0 of UML there are also possibilities to include
information about alternative flow of control primitives [?]. Typically a diagram should
fit on one sheet of A4/letter paper. An example of this is shown in Figure ??.

Using a collaboration diagram as an alternative view of the sequence diagram. This al-
lows representation of a simple scenario.

Using an activity diagram if necessary (or multiple activity diagrams). An example of this
is shown in Figure ??.

Using a state diagram if the complexity of the use case justifies it.

2.1.2 Capturing Requirements Using VDM-SL

As an alternative to the use case approach described above in Section ??, the informal requirements
can be captured in a design-independent way using VDM-SL. In the first instance this follows
Chapter 2 of [?, ?, ?]. At this stage, time can be included as a state variable and can be driven as
part of the model. In this way the functional, timing, and time-dependent functional requirements
can be captured within one model.

The general strategy used to model a real-time system is to model the system as one top-level
operation where the input is considered as a sequence of events which comes into the system to
be modelled. The output from the top-level operation will then be those events which are sent out
from the system. If time is essential, all input and output events must be tagged with the time
at which the event appeared (i.e. an extra field in the event record values). In this way time is
modelled explicitly in such a VDM-SL model.

The general structure of the top-level function in such a VDM-SL model would look like (this
is without taking the closed loop complications into account at the top-level):�
operations

PerformSystemReaction: seq of SensorInput ==>
seq of ActuatorCommand

PerformSystemReaction(inputseq) ==
if inputseq = []
then []
else SensorTreatment(hd inputseq) ˆ

PerformSystemReaction(tl inputseq)
� �
The types SensorInput and ActuatorCommand can then either include the time explic-

itly as an attribute or a fixed stepping length between the inputs can be modelled such that the
time is represented implicitly. When the treatment of a sensor input may take longer than the
next sensor input arrives, it is likely that this will cause an interruption of the existing treatment.
In that case the functional description using the functions SensorTreatment and Perform-
SystemReaction used above are more complicated. A full example of such a VDM-SL model
is given in Section ??. Naturally the feedback loop where the way the environment behaves de-
pending upon the system reaction cannot be taken appropriately into account with this approach.
Thus, if a sequence of sensor input does not fit with the order of the system output sequence. It
simply means that the given input sequence does not match reality. Despite this such a high level
executable model may be valuable to act as an oracle against real final implementation scenarios.

In order to accomodate for a proper feedback loop one simply needs to introduce an accumu-
lating parameter with the actuator commands to be issued unless new sensor inputs are detected.
That accumulating parameter can then be manipulated accordingly when new sensor input arrives.

– 23 –

This approach is actually followed in Section ??.
Note that it is possible to construct a GUI to animate the VDM-SL model to allow users, domain

experts and clients to see how the requirements have been captured. This animation technique
allows visualization of a number of scenarios where the input/output relations can be inspected.

2.1.3 Validating Requirements Capturing

Traditionally in the life-cycle only test planning would take place in the early phases of a systems
development [?]. One of the advantages of the development process described here is, that it makes
it possible to carry out systematic testing, and thus get feedback on such test plans, much earlier
in the life cycle. If the flat VDM-SL approach has been used for capturing the requirements, then
the GUI used for interaction with the client and users should be reused, and the model should be
animated to the satisfaction of the client and users. At the final acceptance test of the completed
system the regression test environment should be reused as much as possible by changing the script
from execution of the abstract VDM-SL model to execution of the final implemented system as a
kind of proof of concept prototype.

2.1.4 Criteria for Completion

This stage is complete when:

1. The architecturally significant use cases have been completed and they have been manually
validation for example using inspection or

2. The abstract VDM-SL model has been completed and validated.

2.2 Sequential Design Model

A sequential design model must describe both the data that is to be computed, and how it is to be
structured into static classes, without making any commitment to a specific dynamic architecture.

The first stage in creating a sequential model is to decide on a static architecture. A static
architecture is an arrangement of system behaviour into classes/objects. There already exist a
number of classical books about deriving a class structure [?, ?, ?, ?] so we will not include that
discussion in this document. This document will only provide a few guidelines about how the
classes can be identified and discuss to what extent a VDM-SL model can be reused when one
produces VDM++ skeletons for each of the identified classes in a system.

The approach to developing a static architecture depends on whether the UML approach or the
VDM-SL approach was used to capture requirements. These are therefore treated separately below.
Note that whichever requirements capture approach was used, the result of the current phase will
always be VDM++ class skeletons.

Actor Entity Class Boundary Class Control Class
Actor N/A No Yes No
Entity Class No No1 No Yes
Boundary Class Yes No No Yes
Control Class No Yes Yes Yes

Figure 2.6: Recommendations for Associations Between Classes

2.2.1 If UML Was Used For Requirements Capture
If UML was used for requirements capture, the uses cases are analyzed to identify a number of
classes, and from these classes VDM++ class skeletons are produced.

Identify the classes

This activity consists of identifying concepts, and more generally, abstractions from the specifica-
tion resulting from the requirements capturing process. Also, relationships between these classes
should be defined. Entire books are written about this subject so here only a short introduction
is provided using terminology from the literature [?]. Note that at this stage it is more important
to identify the classes, than to add detail to particular classes. There should be classes both for
the system itself and also for the artifacts from the environment in order to be able to capture the
feedback from the environment. However it may be possible to define some attributes and relations
on the basis of dependencies identified by use cases. From these classes, a first class diagram may
be created.

The following stereotypes should be used for each class:

Entity Class Indicates that the class contains persistent data.

Control Class Indicates that the class controls, sequences and coordinates activity in the system.

Boundary Class Indicates that the class is an interface to an actor (a part of the environment to
the system).

A number of recommendations apply to the use of associations between classes. These can be
found in Table ?? where “No” indicates that they should not be combined and “Yes” indicates that
they can be combined.

Producing VDM++ Class skeletons

When the definition of classes is finished, the next stage is to generate skeleton VDM++ classes
for the model. Class skeletons can automatically be generated using UML class diagrams and the
UML-VDM++ link feature from VDMTools or the Overture linkage to Modelio. Each such file
contains the VDM++ skeleton of the class.

1Unless there exists an aggregation or composition between the two classes.

– 25 –

2.2.2 When VDM-SL was used for Requirements Capturing
When the informal requirements are captured in a precise way using VDM-SL it is often possible to
conceptually reuse most of the VDM-SL operations inside the VDM++ classes where structuring
and design decisions are taken into account. However, for real-time systems the nature of the
VDM-SL model will traditionally be very different from the design which is needed in the system
architecture so less reuse should be expected for this kind of systems. Still, the use of VDM-SL
for requirements capturing may still be valuable for such systems.

Having defined the formal functional requirements in the VDM-SL model, these requirements
should be mapped to a static architecture. That is, skeleton VDM++ classes should by synthesized
from the VDM-SL model. This is not an automatic process and we do not claim to be original or
better than anybody else with guidelines about how one most conveniently divides the system into
components or classes. The following guidelines should be used during this synthesis:

• Record types in the VDM-SL model typically become classes in the static architecture.

• Activities which are functionally independent will typically be encapsulated in separate
classes in the static architecture.

A guideline which is always good to follow to divide into classes and relationships between
classes, is that one should model both the system in question and its environment. Typically each
sensor and actuator will get their own classes. From a deployment perspective instances of such
classes will also typically be allocated to their own CPU’s. These would be the actors from the
use case diagram. Traditionally it is often a good idea to have a World class which controls the
overall interaction between the environment and the classes representing the system in question.
This class can then be used for setting up the appropriate connections between the different objects
and testing the interaction between them.

An example of synthesizing such class skeletons is given in Section ??.

2.2.3 Class Descriptions in VDM++
Class skeletons should evolve into complete specifications. This involves completing operation
bodies for those operations already referred to in the previous stages, and adding any auxiliary
functions and operations.

Where possible invariants on types and instance variables should be identified and specified.
Pre-conditions should be specified for all operations and functions that are non-total, and post-
conditions should be specified wherever it is meaningful to do so (i.e. where it does not lead to
restatement of the function or operation body, if present).

An example of completed class descriptions in VDM++ is given in Section ??.

2.2.4 Modelling of the Environment
It is often difficult to model the behaviour of a reactive real-time system without reference to the
environment in which it is executed. Thus it is often convenient and useful to create classes (and/or

Figure 2.7: General Class Diagram for an Embedded System

threads in a concurrent model) which represent this environment. These classes may then be used
to inhabit the model with test data.

2.2.5 Typical Design Structure
Figure ?? illustrates the general static class structure recommended for reactive embedded systems
in the guidelines in this document. It is recommended to always have a class responsible for the
Environment and a class responsible for the composition of the components using inside the
system called SystemName. It is also recommended always to have a class called World that
contain a constructor responsible for setting up both the environment and the system components
enabling them to carry out a scenario.

The scenario is then usually invoked by an operation called Run. Thus, typically one can
made a call like new World().Run() where the details of the scenario are either given as a
parameter or stored in a file that will be read by the standard IO class. Since reactive systems
will react to stimuli from the environment IO is typically used inside the Environment class
or one of the other classes representing parts of the environment (EnvironmentClass1 and
EnvironmentClass2 in Figure ??).

In addition to a constructor the Environment is recommended to contain operations to pro-
vide input for the system (createSignal) and operations to receive feedback from the system
(handleEvent). It is also recommended to provide an operation called isFinished for all
classes that play an active role in a scenario (this operation shall indicate when the processing is

– 27 –

finished locally). This holds for both environment and system classes. As will be clear after the
example is presented in Chapter ?? the signature for isFinished will in the sequential model
typically yield a Boolean result, but that will change in the concurrent and distributed models. For
the Environment class it is also necessary to provide some kind of operation that can show the
result of running a given scenario (showResult).

It is recommended to use static public instances from the World and the overall system class
SystemName in order for them to be accessible throughout the model without having to pass the
object references around. This also includes some kind of notion of time if time is of importance
for the reactive system (which it usually is). In the sequential model it is recommend to use a basic
Timer class here, but in the concurrent model a stronger notion of time and synchronisation as
will be seen in Section ??.

Finally it is worth mentioning that it is recommended to let the flow of control be steered
from the Environment. At the sequential level this is typically done using a loop until both the
environment and the system are finished (using different isFinished operations. Inside the loop
Step operations are used for stepping over time and passing the control around to the different
components of the system.

2.2.6 Validation of the Model
Whenever possible the model should be executed to allow validation. If the use cases approach has
been used in the requirement capturing process, then execution should ensure that model execution
satisfies all of the use cases identified.

Note that even if the whole model is not executable, portions of it may be, and therefore these
portions should be validated in the manner described above.

In addition to the animation technique for validation of the model described above a more
systematic traditional testing approach should also be used to validate the model. Thus, test cases
should be defined and an automatic test script should be made such that the test cases can be used
in a regression fashion during this phase and reused in subsequent phases. The VDMUnit test
framework from [?] (chapter 9) may be used with advantage here (include the VDMUnit standard
library).

2.2.7 Criteria for Completion
This stage is complete when:

1. The VDM++ model is syntax and type correct;

2. The UML class diagram and VDM++ model are synchronized;

3. The model has been validated;

4. XX% test coverage for executable portions of the model (uncovered parts should be justi-
fied).

Here “XX” is a figure that would be determined by the standards used by each individual
company or organization.

2.3 Concurrent VDM++ Design Model

The objective in developing a concurrent VDM++ design model is to take the first steps towards
a particular dynamic architecture, without worrying in the first instance about real-time behaviour.
An example of such a model is given in Section ??.

2.3.1 Identification of Threads

The first step in developing a concurrent model is to identify which computations can be performed
independently of each other. These computations may then be separated into independent threads.
Often, this separation will be forced by hardware constraints and/or pre-defined architectural re-
quirements. While it is worthwhile identifying as many independent threads as possible, in general
the number of threads in the system should be minimized. This is because (again in general)
threads increase complexity of the model and make model validation more difficult.

2.3.2 Communication

After identification of threads, it must be decided which threads communicate with each other,
and what values are passed. Accordingly object sharing between threads should be specified. For
classes representing shared objects, appropriate synchronization should be specified.

2.3.3 Synchronization Points

In addition to synchronized object sharing it may be necessary to introduce explicit synchronization
points. That is, ensure that a particular thread does not proceed beyond a specified point, until
another thread has reached an appropriate state. This can be important to ensure correct sequencing
amongst the different threads, or else to ensure freshness of data. In general if an operation both
reads from and writes to instance variables it will be advantagous to make it mutexed with itself.

2.3.4 Validation of the Model

The model should be executed using the same scheduling policy as that used by the target real-
time kernels used for the processors in the target environment. Upon execution the model should
be free of deadlocks (note that there is not yet a formal analysis conducted in Overture for this, so
it is limited to the scenarios used as test cases). Moreover the model should functionally yield the
same results as the sequential model, perhaps modulo some adjustments with the formulation of
the values and the time at which they appear.

– 29 –

2.3.5 Typical Design Structure
The general structure from Figure ?? is also recommended for concurrent models. The main
changes from the sequential model are:

• Flow of control is changed such that instead of it residing with the Environment it will
be distributed to all the active parties and thus the body of the Step operations are typically
turned into threads.

• Synchronization between the different threads are specified using permission predicates and
mutex constraints.

• The signature for the isFinished operations is changed such that no value is returned.
Instead the Boolean expression is typically used as permission predicates. This is a way to
block the threads requesting this operation until the corresponding instance indeed is finished
with its business.

• It is recommended to replace the simple Timer class with a BaseThread and a TimeStamp
class from Appendix ?? in order to easily synchronize the steps taken now when the flow of
control is distributed to multiple threads.

2.3.6 Criteria for Completion
1. The VDM++ model is syntax and type correct.

2. The UML class diagram and VDM++ model are synchronized.

3. The model has been validated.

4. The model displays no deadlocks;

5. XX% test coverage for executable portions of the model (uncovered parts should be justi-
fied).

Here “XX” is a figure that would be determined by the standards used by each individual
company or organization.

2.4 Concurrent Real-Time and Distributed VDM-RT Design
Model

At this stage real-time information is added to the model. In addition if the system in question is to
be distributed over multiple processors allocation of functionality to such processors are conducted.
The timing analysis described in Section ?? is then performed. Following such analysis, it may
be concluded that the proposed dynamic architecture is in fact infeasible. Therefore it might be

necessary to revisit Section ?? and revise the dynamic architecture or revise the deployment of the
functionality to CPU’s or their capabilities. An example of a concurrent real-time model is given
in Section ??.

2.4.1 Duration and Cycle Statements
For those parts of the model where knowledge of real-time behaviour exists (e.g. components
which are being reused) duration statements should be used to give precise estimates of fixed
execution times. The cycle statements should be used to give precise estimates of the execution
time relative to a processor (in the form of the number of expected clock cycles).

For those parts of the model which are effectively modelling the environment. Depending upon
the accuracy needed for the VDM-RT model of the system under design the model of the environ-
ment should be more elaborate. Here is is possible to have different instances in the environment
on each their own virtual processor or even be modelled using its own formalism and validated
using a co-simulation interface. However, it is also possible for example to model the environment
to constrain the environment instances to be deployed on the same processor.

For modelling closed loop systems, a duration statement should be used to force a delay in the
time between sending a command to an actuator, and seeing its effect at a sensor.

2.4.2 Task Switching Overhead
The task switching overhead for the target real-time kernel should be ascertained. This value
should be used as the task switching overhead in Overture and VDMTools during execution of the
model.

2.4.3 Typical Design Structure
The general structure from Figure ?? is still recommended for the real-time distributed models.
The main changes from the concurrent model are:

• The SystemName class is now changed to become a system where additional instance
variables are introduced for all the CPU’s and BUS’es that one would like to distribute the
functionality to. In addition a constructor is introduced here where the actual deployment
of the static instance variables to CPU’s take place. In addition it is possible to define the
priority of different operations in this constructor in case priority-based scheduling is used
on some of the CPU’s.

• Optionally a system can be created of the Environment class as well. In case this is not
done VDMTools will simply execute all functionality on a virtual CPU for each instance cre-
ated in the World class. Thus, it may be valuable making a system for the Environment
in case that it is essential that the environment functionality have dependencies upon each
other and thus when one instance is executing another instance cannot also be executing in a
true parallel fashion.

– 31 –

• A number of the operations that simply need to start execution on a different thread are
made asynchronous using the async keyword. Note that in essence if such two instances
are deployed at different CPU’s behind the back of the user they will communicate over a
BUS and here the notion of synchronism is essential.

• Some of the threads (typically those that previously had Step functionality) are turned into
periodic threads.

• The explicit notion of time (at the concurrent level using the BaseThread and TimeStamp
classes) is removed. Now time is implicit and it is possible to make use of the keyword time
to refer to the current time on a given CPU.

2.4.4 Validation of the Model
The model should be executed using as many different scenarios as are necessary to satisfy the
following two criteria:

1. To achieve the required test coverage as dictated by the completion criteria for this stage;

2. To cover all use cases identified during requirements capture (if the UML was used to capture
the requirements).

This execution can be used to check correctness of computed values in these scenarios, and
the absence of deadlocks. Note that introduction of real-time information could in itself introduce
deadlocks to the model, as it could cause the scheduler to make different decisions to those made
during execution of the untimed model.

2.4.5 Timing Analysis
Execution of the model will create a time trace file which may be analyzed subsequently (examples
of this are shown in Chapter ??). Analysis should establish the following:

• No periodic threads miss their deadlines.

• All real-time response requirements are satisfied (all hard real-time deadlines are met with
the used scenarios).

Here the RealTime Log Viewer feature from Overture is particular valuable in the automatic
analysis of these timed traces. It is able to automatically to provide:

• A graphical overview of the physical architecture with the CPU’s and the BUS’es.

• Show an overview of the overall execution and communication between the CPU’s.

• Show a detailed overview of the instances and the execution and communication between
these at a single CPU in a detailed fashion.

2.4.6 Criteria for Completion
1. The model is syntax and type correct.

2. The UML class diagram and VDM-RT model are synchronized.

3. The model is schedulable.

4. The model displays no deadlocks.

5. The model is functionally correct for all executed scenarios.

6. The model includes a deployment of functionality to a physical architecture.

7. All periodic threads make their deadlines with the chosen physical architecture for the tests
conducted.

8. Any real-time response requirements are satisfied for the tests conducted.

9. XX% test coverage for executable portions of the model (uncovered parts should be justi-
fied).

Here “XX” is a figure that would be determined by the standards used by each individual
company or organization.

2.5 Implementation
The approach to implementation depends upon the target implementation language and constraints
on program structure and performance. If C++ is the implementation language, and dynamic
memory allocation is permitted, then use of the VDMTools C++ Code Generator is possible. This
implies a massive reduction in effort, since the implementation is obtained by one mouse click.
Similarly if Java is the implementation language, the VDMTools Java Code Generator can be
used. However, such automation should not be relied upon for hard-real-time systems and the
distribution of the model os not taken into account in this code generation.

In other circumstances the implementation must be written by hand. However this tends to be
quite straightforward due to the quantity and depth of information acquired during the modelling
stages. Typically a number of rules can be applied reasonably mechanically, to translate the VDM-
RT model into code.

2.6 The Different Test Phases
As identified in Figure ?? there are a number of different phases with different levels of testing con-
ducted on the system being developed. With conventional development technology it is normally
not possible to validate whether a system under development will be able to meet its deadlines

– 33 –

Figure 2.8: Relationship Between VDM Models

before the target integration test phase. If these tests show that it is not possible to meet the dead-
lines, there is therefore a significant cost involved in redesigning the system and its corresponding
implementation to improve this situation. The approach described in this document aims to find
potential bottlenecks in the system even before the final implementation is made. The aim is to
be able to sit on the host computer (where the development takes place) and simulate the timing
behaviour of the concurrent real-time VDM-RT design model with information about the timing
behaviour of the intended possibly distributed hardware platform.

With the approach described in this document the test cases used in the different test phases are
already executed when the design is made and then reused with the final implementation subse-
quently. This is a major change compared to the conventional way of development where feedback
about the timing properties of a particular design only comes very late in the development process.
Note however that each of the different models gets closer and closer to reality, where the most ab-
stract models have a somewhat idealised view of the system and its environment, the later models
takes more and more details into account.

2.7 Discussion

In this chapter we have described the evolution of one VDM-SL model and three object oriented
VDM models: a sequential model, a concurrent model and a concurrent distributed real-time
model. There is no formal relationship between them in the sense that no formal relationship has
been established between any of the models. This is consistent with the pragmatic software engi-
neering approach advocated in this process, in contrast to a pure formal development. Nonetheless,
since the process involves adding detail to each model, to obtain the next model, in some sense
we can consider each model a sub-model of the next, as shown in Figure ??. That is to say, the

concurrent model is an extension of the sequential one, and the real-time and distributed model is
an extension of the concurrent one. Each of the models get more and more concrete and complex,
but gradually closer and closer to reality.

Chapter 3

Example Development

In this chapter an example development process is presented. This development goes through each
of the steps from Chapter ??. The system developed is a simplified version of an actual real-time
system. The chapter begins by presenting the informal requirements for the system and then the
different models developed are presented.

3.1 The Counter Measures System
The application to be modelled in VDM is the controller for a missile counter measures system.
This takes information from sensors concerning threats and sends commands to hardware which
releases flares intended to distract the threat sensed. The overall high-level architecture is shown
in Figure ??.

Flares are released in a timed sequence, the number of flares released and the delay between
releases depending on the threat and its angle of incidence with the missile. Different places around
an aircraft different flare dispensers or magazines are located dealing with threats arriving from
different angles. The threat sensors relay the ID of the threat to the controller. For each different
kind of ID and the angle of the missile the controller must then derive a plan for how to deal with
the given threat by firing a sequence of flares with a given pattern with a given flare dispenser (a
magazine) dealing with the given angle. Such a pattern contains the number of flares to be fired
and the delay between each firing. The task communicates the stated number of firings to the flare
release hardware with the specified delay between each communication. For the purposes of this
document it is assumed that there are only two kinds of physical flares.

An example firing sequence is shown in Figure ??. Flare release commands are represented
by the vertical arrows. Five actions are depicted in this figure. For simplicity we will assume
that only three kinds of missiles are known to the system: A, B and C where they have increasing
priority in this order. Similarly we simplify the example by supposing that there are only two
kinds of physicals flares, together with the special “Do Nothing” flare, which requires that nothing
is released for a specified duration. For the purposes of this example we assume the counter
measures system for each flare dispenser to respond to the different missile types as shown by the
firing sequences in Figure ??.

35

Figure 3.1: Context Diagram for the Counter Measures System

Figure 3.2: Example Firing Sequence

The following requirements apply to this system:

1. If while computing the firing sequence with a flare dispenser for a given threat from an angle
treated by the same flare dispenser, another threat is sensed (in the same angle area), the
system should check the priority of the more recent threat and, if greater than the previous
one, should abort computation of the current firing sequence. Computation of the new firing
sequence should then take place.

2. If different threats are sensed with angles that are treated by different flare dispensers the
corresponding firing sequences shall be performed in parallel.

3. The controller should be capable of sending the first flare release command within 250 mil-
liseconds of receiving threat information from the sensor.

4. The controller should be able to abort a firing sequence within 130 milliseconds.

The system to be developed can be composed of a number of different hardware components
(sensors and flare dispensers) organised in a physical architecture to be determined.

– 37 –

Figure 3.3: Example Missile Responses Used in the Models

3.2 UML Use Cases for Requirements Capture

If use cases are used for capturing the requirements for the counter measures system we produce
a use case diagram like the one shown in Figure ??. For each of the ovals (the graphical repre-
sentation of a use case) a textual description of the use case must be made. This is typically done
in an itemized fashion. In the three subsections below we show such a description for each of the
different use cases.

Figure 3.4: Use Case Diagram for the Counter Measures System

3.2.1 Deploy Counter-measures
Primary Actor(s): Missile Sensor and Flare Dispenser

Secondary Actor(s): None

Intent: This use case is responsible for taking the given threat identification and fire flares accord-
ingly.

Assumptions: All potential threats are identified.

Known Limitations: If threats come too close to each other the system may not be able to manage
to deal with all of them.

Includes: “Detect Missile and Select Dispenser” and “Select Sequence and Fire Flares”

Pre-conditions: A threat has arrived and has been detected by a missile sensor.

Course of action: When a new threatening missile has been detected by a missile sensor the ap-
propriate flare dispenser should be determined upon the angle of attack. Then, it should be
determined if another threat is already being handled by the flare dispenser. In that case the
priority of the thread identification must be compared and if the new threat has a higher pri-
ority its sequence of flares must be determined and that flare dispenser must interrupt what
it is currently doing and start firing this new sequence. If the priority is equal to or lower
the threat is simply ignored. If no threats have been detected previously the corresponding
sequence of flares must be determined and subsequently fired using that flare dispenser. This
is illustrated in the state diagram shown in Figure ??.

– 39 –

Post-conditions: When the firing of the flares is complete the threat should be distracted and no
longer be targeting the system guarded by the counter measures system.

3.2.2 Detect Missile and Select Dispenser
Primary Actor(s): Missile Sensor

Secondary Actor(s): None

Intent: This use case is responsible for taking the given threat identification and its angle of attack
and based on this determine what flare dispenser to select.

Assumptions: All potential threats are identified.

Known Limitations: If threats come too close to each other the system may not be able to manage
to deal with all of them.

Includes: None.

Pre-conditions: A threat has arrived and been detected by the missile sensor.

Course of action: Whenever a thread identification and its angle of attack is received the respond-
ing flare dispenser must be selected and the sequence of flares fires must follow the identifi-
cation from Figure ??.

Post-conditions: The correct flare dispenser and the flare sequence to be fired has been identified.

3.2.3 Select Sequence and Fire Flares
Primary Actor(s): Flare Dispenser

Secondary Actor(s): None

Intent: This use case is responsible for performing the actual firing of a sequence of flares accord-
ing to the timing requirements described in Section ??.

Assumptions: All potential threats are identified.

Known Limitations: There is probably a physical limit concerning how close the different flares
can be fired after each other.

Includes: None

Pre-conditions: A sequence of flares have been identified.

Course of action: An internal timer is started and the different flares are fired by the flare dis-
penser at the times identified by the firing sequence.

Post-conditions: All necessary flares have been released.

Figure 3.5: State Diagram for Deploying Counter Measures

3.2.4 Summary
As it can be seen from the use case descriptions given above the key functionality of the counter
measures system is identified by the use cases. It is an abstract way of looking at the system, inde-
pendent of the different design issues which must be taken into account later in the development
process. The use cases can be a first way to communicate that one has captured the essential usage
of the system to other domain experts. The use case diagram can be a nice way to get an overview
of how the different use cases hang together, in particular when more complex systems are to be
modelled. However, any validation of the use cases can only take place in the form of manual
reviews. There is no way in which any kind of automated validation can be performed when we
deal with natural language formulations like the ones shown above.

3.3 VDM-SL for Requirements Capture
In this section the requirements to the counter measures system are captured in a precise way using
VDM-SL. The intention is to end up with an abstract specification independent of any design issue.
The development of the model follows the general principles from Section ??. The underlying
modelling decisions made in this first model is to inspect the first missile and determine what the
appropriate response should be if that was the only threat received. In case there are more than

– 41 –

one missile arriving in an area before the processing of the current missile the response is altered
in case the priority of the new missile is higher than the current one.

3.3.1 Definition of Types
The counter measures system takes MissileInput’s as input. This is a sequence of values
of pairs of MissileType and Angle. MissileType’s are constant values representing the
different possible missiles that could be detected. In this case we have three different missiles,
for testing purposes, together with the special value <None> representing the absence of any
missile. Angle for simplicity is modelled as a number from 0 to 360 degrees (corresponding to
one possible model of a two dimensional coordinate system).�
types

MissileInputs = seq of MissileInput;

MissileInput = MissileType * Angle;

MissileType = <MissileA> | <MissileB> | <MissileC> | <None>;

Angle = nat
inv num == num <= 360;
� �

The type Output represents a mapping from identifiers for magazines (MagId) to a sequence
of OutputSteps, where an OutputStep is a pair consisting of the type of flare to be released
(FlareType) and the time at which it was released (AbsTime modelled in milliseconds).�
Output = map MagId to seq of OutputStep;

OutputStep = FlareType * AbsTime;

AbsTime = nat;
� �
Note that it is assumed that there only are two kinds of physical flares (FlareOne and

FlareTwo), and also the action of doing nothing can be critical for reacting to a threat, so it
is considered as a kind of flare. All of these are additionally tagged according to the type of missile
which they are responding to, in order to allow easy validation of generated results.�
FlareType = <FlareOneA> | <FlareTwoA> | <FlareOneB> |

<FlareTwoB> | <FlareOneC> | <FlareTwoC> |
<DoNothingA> | <DoNothingB> | <DoNothingC>;
� �

A Plan is used during construction of the output. This consists of a FlareType to be
released, and the amount of time to wait after its release before the next one should be released,
Delay.�
Plan = seq of (FlareType * Delay);

Delay = nat;
� �

3.3.2 Value Definitions
Information concerning how to handle different missiles is stored in responseDB (a mapping
from missiles to sequences of responses represented in a Plan as identified by Figure ??).�
values

responseDB : map MissileType to Plan =
{<MissileA> |-> [mk_(<FlareOneA>,900), mk_(<FlareTwoA>,500),

mk_(<DoNothingA>,100), mk_(<FlareOneA>,500)],
<MissileB> |-> [mk_(<FlareTwoB>,500), mk_(<FlareTwoB>,700)],
<MissileC> |-> [mk_(<FlareOneC>,400), mk_(<DoNothingC>,100),

mk_(<FlareTwoC>,400), mk_(<FlareOneC>,500)]
};
� �

The relative priority between missiles is represented using missilePriority, which maps
each missile to a numeric value, where greater numeric value indicates higher priority.�
missilePriority : map MissileType to nat

= {<None> |-> 0,
<MissileA> |-> 1,
<MissileB> |-> 2,
<MissileC> |-> 3};
� �

Each value in the input is separated by 100 milliseconds. Larger gaps between missile arrivals
are indicated by the value <None> in the input. We use the symbolic constant stepLength to
represent this temporal separation.�
stepLength : Time = 100
� �
3.3.3 The Counter Measures Functionality
The top-level function is called CounterMeasures. This takes MissileInputs as input and
returns Output. It consists simply of a call to the auxiliary function CM.�
functions

CounterMeasures: MissileInputs -> Output
CounterMeasures(missileInputs) ==

CM(missileInputs,{|->},{|->},0);
� �
The recursive version of the counter measures function, CM, takes four parameters. They can

be explained as:

missileInputs: This parameter contains the missile input which has not yet been considered
in the analysis of which flares should be fired. Recursion is done over this parameter such
that in each recursive call this sequence will be one smaller.

outputSoFar: This parameter contains a mapping from the magazine identifiers to the flare
sequence expected to be fired (and their expected firing time) given the missile inputs taken

– 43 –

into account so far. This is the accumulating parameter which at the end will contain the
final result.

lastMissile: This parameter contains mapping from the magazine identifier to the last missile
which has had effect on the output so far relative to the MagId. The priority of this missile
is important in relation to the next missile arriving.

curTime: This parameter specifies the time at which this missile has been detected (a multiple
of stepLength).

If no missiles are left to take into account for counter measures the outputSoFar can
be used directly. Otherwise the priority of the next arriving missile must be compared to the
lastMissile. If the priority of the new arriving missile is higher than the last missile the exist-
ing plan for output must be interrupted and the response for the new missile must be incorporated
instead. If on the other hand the priority is lower, the current missile can be ignored.�
CM: MissileInputs * Output * map MagId to [MissileType] *

nat -> Output
CM(missileInputs, outputSoFar, lastMissile, curTime) ==

if missileInputs = []
then outputSoFar
else let mk_(curMis,angle) = hd missileInputs,

magid = Angle2MagId(angle)
in

if magid not in set dom lastMissile or
(magid in set dom lastMissile and
missilePriority(curMis) >
missilePriority(lastMissile(magid)))

then let newOutput =
InterruptPlan(curTime,outputSoFar,

responseDB(curMis),
magid)

in CM(tl missileInputs, newOutput,
lastMissile ++ {magid |-> curMis},
curTime + stepLength)

else CM(tl missileInputs, outputSoFar,
lastMissile,curTime + stepLength)

measure CMLen;
� �
Note that the CMLen function used in the measure part here simply is used to indicate how this
recursive definition is guranteed to terminate.�
CMLen: MissileInputs * Output * map MagId to [MissileType] * nat -> nat
CMLen(list,-,-,-) == len list;
� �

The function InterruptPlan is used to modify the previously expected output so that the
response for a higher priority missile can be incorporated into the output. This means that the
output before curTime is unchanged, whereas the output on or after curTime is taken from the

given Plan1. Thus, conversion needs to take place here; this is performed by MakeOutputFromPlan.�
InterruptPlan: nat * Output * Plan * MagId -> Output
InterruptPlan(curTime,expOutput,plan,magid) ==

{magid |-> (if magid in set dom expOutput
then LeavePrefixUnchanged(expOutput(magid),

curTime)
else []) ˆ
MakeOutputFromPlan(curTime, plan)}

munion
({magid} <-: expOutput);
� �
LeavePrefixUnchanged ensures that the output before the current time is not affected by

the latest missile arrival.�
LeavePrefixUnchanged: seq of OutputStep * nat ->

seq of OutputStep
LeavePrefixUnchanged(output_l, curTime) ==

[output_l(i) | i in set inds output_l
& let mk_(-,t) = output_l(i) in t <= curTime];
� �

MakeOutputFromPlan converts a sequence of responses (response) which began at time
curTime and converts it into an Output value. It converts the responses into an output in which
the first flare was released at time 0. This output is then offset by the current time, to produce the
desired output.�
MakeOutputFromPlan : nat * seq of Response -> seq of OutputStep
MakeOutputFromPlan(curTime, response) ==

let output = OutputAtTimeZero(response) in
[let mk_(flare,t) = output(i)
in

mk_(flare,t+curTime)
| i in set inds output];
� �

The function OutputAtTimeZero takes a response and converts it into an output whose first
flare is released at time zero. Thereafter the delay between flare releases corresponds to the delay
specified by the response.�
OutputAtTimeZero : seq of Response -> seq of OutputStep
OutputAtTimeZero(response) ==

let absTimes = RelativeToAbsoluteTimes(response) in
let mk_(firstFlare,-) = hd absTimes in
[mk_(firstFlare,0)] ˆ
[let mk_(-,t) = absTimes(i-1),

mk_(f,-) = absTimes(i)
in

mk_(f,t)
| i in set {2,...,len absTimes}];
� �

1Note that Output is in terms of absolute time, whereas Plan is in terms of relative time.

– 45 –

The function RelativeToAbsoluteTimes performs conversion from relative delays into
absolute times. This recursively offsets later flare releases in the response by the delay of the first
flare release.�
RelativeToAbsoluteTimes : seq of Response ->

seq of (FlareType * nat)
RelativeToAbsoluteTimes(ts) ==

if ts = []
then []
else let mk_(f,t) = hd ts,

ns = RelativeToAbsoluteTimes(tl ts) in
[mk_(f,t)] ˆ [let mk_(nf, nt) = ns(i)

in mk_(nf, nt + t)
| i in set inds ns]

measure RespLen;

RespLen: seq of Response -> nat
RespLen(l) ==

len l;
� �
The Angle2MagId function makes a conversion from the input angle of the missile to the

magazine to cope with that missile. In this early high-level model this function have simply hard-
coded 4 different magazines each coping with 90 degrees for test purposes.�
Angle2MagId: Angle -> MagId
Angle2MagId(angle) ==

if angle < 90
then mk_token("Magazine 1")
elseif angle < 180
then mk_token("Magazine 2")
elseif angle < 270
then mk_token("Magazine 3")
else mk_token("Magazine 4");
� �

3.3.4 Validation of the Model

In order to gain confidence in the functionality of the model being appropriate it is necessary to
validate it somehow. Since this model is made in VDM-SL it is fortunately possible to validate it
using the VDM-SL version of Overture. Once the model have been syntax and type checked it is
possible to test that the main function called CounterMeasures behave in the intended fashion.
Here the strategy is as always with testing to start from simple values and gratually produce more
and more conplex scenarios. In this case one could for example start with testing the behaviour
with each of the missiles arriving as the only one.

In Appendix ?? three value definitions are presented that has been used to test the intended
behaviour with more complex scenarios. These three turned out to be enough to cover all parts
of the model which can be shown using the test coverage feature from Overture. This first model
in VDM-SL is abstracting away from different timing delays but even though it makes sense to

inspect the specific timing requirements for the system (listed as item 3 and 4 on page ??). Both
of these timing requirements are also validated with the given scenarios.

3.3.5 Summary
In Section ?? a very abstract model of the counter measures system has been presented. Note
how this model follows the general principles for specifying a real-time system using VDM-SL
presented in Section ??. This model is entirely independent of any design issues which need to
be taken into account later to break the system down into its static components (classes) and its
dynamic architecture (threads). The main virtue of this model is that it precisely characterizes the
requirements of the counter measures system without any kind of design details.

This model was tested with a number of test cases. A significant portion of time was invested
in ensuring that these test cases covered a wide range of scenarios, and that the model delivered
the expected results. However there are two returns on this investment: first, the test cases can
be reused during system acceptance testing; second, the VDM-SL model can be used as an oracle
during the development of later models, to compare the functional behaviour of these later models.

The lesson which can be learnt from this abstract model is that we now have a common under-
standing of what the counter measures system is intended to do, which can be used as an oracle
when the final implementation is completed. Note however, that it must be kept in mind that this
is an idealised version of the counter measures system.

3.4 VDM++ Class Skeletons
In this section it is considered how a first decomposition of the counter measures system into
different classes can be achieved, as discussed in Section ?? and Section ??. The main guideline
we have used to derive the structuring of the system into classes is that it is necessary to include the
environment in the modelling. This means that we must have classes which simulate the sensors
and actuators of the system.

In Section ?? the main activities displayed are detection of missiles and releasing flares. In
addition we might expect to have a class which simulates the hardware sensors which alert the
system to arriving missiles. Hence we have four candidate classes, which we respectively call
MissileDetector, FlareController, FlareDispenser and Sensor.

As discussed in Section ?? neither the use cases presented in Section ?? nor the VDM-SL
specification presented in Section ?? provide much help in this structuring of the system. Neither
is it easy to reuse all parts of the VDM-SL model because it is a real-time system.

3.5 Sequential VDM++ Design Model
The sequential model has the following classes:

CM: This is the overall system class (a SystemName class) that creates static public instances for
all the system components.

– 47 –

Figure 3.6: Class Diagram for the Sequential Counter Measures Model

World: The main class, used to combine the system classes and the environment and allow exe-
cution of scenarios.

Environment: This is used for modelling the environment (in this case the sensors providing
input for the system).

Sensor: A class for modelling the hardware used to sense the arrival of missiles with a given
angle.

MissileDetector: A class which takes information from the Sensor and passes it to one of
the FlareController’s.

FlareController: A class which controls outputs of flares for a given detected missile using
a number of flare dispensers.

FlareDispener: A class which master the actual firing of flares depending upon the type of
the missile.

Timer: A timer class used to step time throughout the sequential VDM++ model.

IO: A VDM++ standard library class.

GLOBAL: This is a superclass providing a number of general definitions used by a number of the
system and environment classes.

An overview of the relationship between the different classes can be seen in Figure ??.

3.5.1 The Counter Measures Class
This is the overall system class called CM corresponding to the SystemName in Section ??. In
Section ?? four different magazines (or flare dispensers) was used covering 90 degrees each. In
reality it is possible to have different numbers of sensors and actuators. In principle it is also
possible to have overlapping sensors and actuators redundantly in order to increase fault tolerance
for the overall system. In order to illustrate how this can be done using the VDM++ framework
described in this document a design is presented with

• four sensors covering 90 degrees of angle each;

• one missile detector;

• three flare controllers covering 120 degrees of angle each controlling four flare dispensers;

• twelve flare dispensers coping with 30 degrees of each.

In this way each flare controller will have four flare dispensers to control each. As it will be
clear below this is a rather complex system, but it is modelled in a fashion that makes it easy to re-
configure it to investigate alternative compositions of sensors, flare controllers and flare dispensers.

In the CM class this is documented as:

– 49 –

�
class CM
instance variables

public static
detector : MissileDetector := new MissileDetector();
public static sensor0 : Sensor := new Sensor(detector,0);
public static sensor1 : Sensor := new Sensor(detector,90);
public static sensor2 : Sensor := new Sensor(detector,180);
public static sensor3 : Sensor := new Sensor(detector,270);
public static
controller0 : FlareController := new FlareController(0);
public static
controller1 : FlareController := new FlareController(120);
public static
controller2 : FlareController := new FlareController(240);
public static
dispenser0 : FlareDispenser := new FlareDispenser(0);
public static
dispenser1 : FlareDispenser := new FlareDispenser(30);
public static
dispenser2 : FlareDispenser := new FlareDispenser(60);
public static
dispenser3 : FlareDispenser := new FlareDispenser(90);
public static
dispenser4 : FlareDispenser := new FlareDispenser(0);
public static
dispenser5 : FlareDispenser := new FlareDispenser(30);
public static
dispenser6 : FlareDispenser := new FlareDispenser(60);
public static
dispenser7 : FlareDispenser := new FlareDispenser(90);
public static
dispenser8 : FlareDispenser := new FlareDispenser(0);
public static
dispenser9 : FlareDispenser := new FlareDispenser(30);
public static
dispenser10 : FlareDispenser := new FlareDispenser(60);
public static
dispenser11 : FlareDispenser := new FlareDispenser(90);

end CM
� �
3.5.2 The World Class

The World class consists of two static public instance variables and two operations. The two
instance variables refer to the environment and the timerRef to be used by both the environment
and system classes.�

class World

instance variables

public static
env : [Environment] := nil;
public static timerRef : Timer := Timer‘GetInstance();
� �

The constructor World is used to set up the object topology (adding sensors, controller and
dispensers to the environment, the detector and different controllers respectively). In principle
the new Environment could be made in the instance variables section but that could
introduce infinite recursion in the initialisation of Overture or VDMTools.�
operations

public World: () ==> World
World () ==
(-- set-up the sensors

env := new Environment("scenario.txt");
env.addSensor(CM‘sensor0);
env.addSensor(CM‘sensor1);
env.addSensor(CM‘sensor2);
env.addSensor(CM‘sensor3);

-- add the first controller with four dispensers
CM‘controller0.addDispenser(CM‘dispenser0);
CM‘controller0.addDispenser(CM‘dispenser1);
CM‘controller0.addDispenser(CM‘dispenser2);
CM‘controller0.addDispenser(CM‘dispenser3);
CM‘detector.addController(CM‘controller0);

-- add the second controller with four dispensers
CM‘controller1.addDispenser(CM‘dispenser4);
CM‘controller1.addDispenser(CM‘dispenser5);
CM‘controller1.addDispenser(CM‘dispenser6);
CM‘controller1.addDispenser(CM‘dispenser7);
CM‘detector.addController(CM‘controller1);

-- add the third controller with four dispensers
CM‘controller2.addDispenser(CM‘dispenser8);
CM‘controller2.addDispenser(CM‘dispenser9);
CM‘controller2.addDispenser(CM‘dispenser10);
CM‘controller2.addDispenser(CM‘dispenser11);
CM‘detector.addController(CM‘controller2);

);
� �
The Run operation is used to execute the model and this is done by handing over control to the

environment.�
public Run: () ==> ()
Run () ==

– 51 –

env.Run()

end World
� �
3.5.3 The Global Class
The GLOBAL class is responsible for providing a common place to store global definitions of
relevance for the rest of the model.

This includes value definitions indicating the number of degrees that can be observe (the view-
ing angle is termed “aperture”):�
class GLOBAL

values

public SENSOR_APERTURE = 90;
public FLARE_APERTURE = 120;
public DISPENSER_APERTURE = 30
� �

It also includes the MissileType and FlareType that was presented in Section ?? and in
addition a type for identifying the incoming events EventId.�
types

public
MissileType = <MissileA> | <MissileB> | <MissileC> | <None>;

public FlareType =
<FlareOneA> | <FlareTwoA> | <DoNothingA> |
<FlareOneB> | <FlareTwoB> | <DoNothingB> |
<FlareOneC> | <FlareTwoC> | <DoNothingC>;

public Angle = nat
inv num == num <= 360;

public EventId = nat;

public Time = nat
� �
The canObserve operation is used to check whether an aperture (a sensor, a flare controller

or a flare dispenser) can observe a missile coming at the pangle angle. Each subclass of GLOBAL
must supply an operation called getAperture that will yield a pair of degrees indicating the left
hand side that the aperture can observe and the number of degrees it can observe.�
operations

public canObserve: Angle * Angle * Angle ==> bool
canObserve (pangle, pleft, psize) ==

def pright = (pleft + psize) mod 360 in

if pright < pleft
-- check between [0,pright> and [pleft,360>
then return (pangle < pright or pangle >= pleft)
-- check between [pleft, pright>
else return (pangle >= pleft and pangle < pright);

public getAperture: () ==> Angle * Angle
getAperture () == is subclass responsibility;

end GLOBAL
� �
3.5.4 The Environment Class
The Environment class is responsible for the interaction with all the system classes to and from
the environment classes. It is defined as a subclass of GLOBAL. The input and output are sequences
of lines that have types defined for them. The types inline and outline are tuples ending with
the time at which the event have appeared (in outline the last two indicate the time which the
event has been received and dealt with respectively).�
class Environment is subclass of GLOBAL

types

public inline = EventId * MissileType * Angle * Time;
public outline = EventId * FlareType * Angle * Time * Time;
� �

Instance variables exist for performing io in addition to the inlines and outlines.�
-- access to the standard IO library
io : IO := new IO();

inlines : seq of inline := [];

outlines : seq of outline := [];
� �
The mappings ranges and sensors are used for keeping track of the sensors and the angle

ranges they are able to observe between.�
ranges : map nat to (Angle * Angle) := {|->};
sensors : map nat to Sensor := {|->};
inv dom ranges = dom sensors;
� �

Finally evid and busy are used to keep track of the last received event and whether the
environment is busy or not respectively.�
evid : [EventId] := nil;

busy : bool := true;
� �
The constructor reads a given scenario and the file name is used as parameter.

– 53 –

�
operations

public Environment: seq of char ==> Environment
Environment (fname) ==
def mk_ (-,input) = io.freadval[seq of inline](fname) in

inlines := input;
� �
Sensors must be added to the Environment using the addSensor operation. Note that in

order to ensure the state invariant between ranges and sensors an atomic statement is used.�
public addSensor: Sensor ==> ()
addSensor (psens) ==

(dcl id : nat := card dom ranges + 1;
atomic (
ranges := ranges munion {id |-> psens.getAperture()};
sensors := sensors munion {id |-> psens}
)

);
� �
The Run operation create new signals from the environment and steps to the corresponding

system reaction until both the system and the environment are finished with their execution.�
public Run: () ==> ()
Run () ==
(while not (isFinished() and CM‘detector.isFinished()) do

(createSignal();
CM‘detector.Step();
World‘timerRef.StepTime();
);

showResult()
);
� �

The createSignal operation is used for extracting input and directing it to a sensor that
can observe the given input angle pa.�
private createSignal: () ==> ()
createSignal () ==

(if len inlines > 0
then (dcl curtime : Time := World‘timerRef.GetTime(),

done : bool := false;
while not done do

def mk_ (eventid, pmt, pa, pt) = hd inlines in
if pt <= curtime
then (for all id in set dom ranges do

def mk_(papplhs,pappsize) = ranges(id) in
if canObserve(pa,papplhs,pappsize)
then sensors(id).trip(eventid,pmt,pa);

inlines := tl inlines;
done := len inlines = 0)

else done := true)
else busy := false);

� �
The handleEvent operation is used when the CM classes have coped with an input event and

produced an outgoing event that must be stored.�
public
handleEvent: EventId * FlareType * Angle * Time * Time ==> ()
handleEvent (evid,pfltp,angle,pt1,pt2) ==

(outlines := outlines ˆ [mk_ (evid,pfltp, angle,pt1, pt2)]);
� �
The showResult operation is used to write out the overall result.�

public showResult: () ==> ()
showResult () ==

def - = io.writeval[seq of outline](outlines) in skip;
� �
Finally the isFinished operation is used to check if the Environment is finished with its

execution.�
public isFinished : () ==> bool
isFinished () ==

return inlines = [] and not busy;

end Environment
� �
3.5.5 The Sensor Class

The Sensor class is used to model the sensor hardware from the environment. It contains an
instance variable aperture that models the left hand-side of the viewing angle of the sensor.�
class Sensor is subclass of GLOBAL

instance variables

-- the missile detector this sensor is connected to
private detector : MissileDetector;

-- the left hand-side of the viewing angle of the sensor
private aperture : Angle;
� �

The constructor initialises the aperture instance variable and the getAperture operation
uses this information.�
operations

public Sensor: MissileDetector * Angle ==> Sensor
Sensor (pmd, psa) == (detector := pmd; aperture := psa);

public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_ (aperture, SENSOR_APERTURE);
� �

– 55 –

The trip operation is called from the Environment to signal an event. The sensor triggers
the missile detector for further processing using the addThreat operation. Note that the caller
must ensure that the sensor must be able to observe the given event.�
public trip: EventId * MissileType * Angle ==> ()
trip (evid, pmt, pa) ==

-- log and time stamp the observed threat
CM‘detector.addThreat(evid, pmt,pa,World‘timerRef.GetTime())

pre canObserve(pa, aperture, SENSOR_APERTURE)

end Sensor
� �
3.5.6 The Missile Detector Class

The primary task of the MissileDetector class is to collect all sensor data and dispatch each
event to the appropriate FlareController instance.

In the same way as the Environment class instance variables are used for keeping track of
the ranges and the controllers.�
class MissileDetector is subclass of GLOBAL

instance variables

ranges : map nat to (Angle * Angle) := {|->};
controllers : map nat to FlareController := {|->};
inv dom ranges = dom controllers;
� �

The threats instance variable collects the observations from all attached sensors and busy
keeps track of the status of the MissileDetector.�
threats : seq of (EventId * MissileType * Angle * Time) := [];

busy : bool := false
� �
The addController operation is only used to instantiate the model�

operations

public addController: FlareController ==> ()
addController (pctrl) ==

(dcl nid : nat := card dom ranges + 1;
atomic
(ranges := ranges munion {nid |-> pctrl.getAperture()};
controllers := controllers munion {nid |-> pctrl}
);

);
� �
The operation Step is used to “step” the algorithm: it takes threats and finds the right con-

troller to relay the threat to and calls addThreat on the appropriate controller instance. It also

need to ensure that all controllers will take a Step in their own processing.�
public Step: () ==> ()
Step() ==

(if threats <> []
then def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then controllers(id).addThreat(evid,pmt,pa,pt);

busy := len threats > 0;
for all id in set dom controllers do
controllers(id).Step()

);
� �
The addThreat operation is used to modify the event list. In the current model events are

stored first come first served, but one could imagine using a different ordering instead.�
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);
� �
The getThreat operation is a local helper operation to modify the event list. Finally the

isFinished operation is defined such that it is finished when all the controllers are finished.�
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time
:= hd threats;

threats := tl threats;
return res);

public isFinished: () ==> bool
isFinished () ==

return forall id in set dom controllers &
controllers(id).isFinished()

end MissileDetector
� �
3.5.7 The Flare Controller Class
The job of the FlareController class is to determine which flare dispenser to relay the in-
coming threat to the right flare dispenser.

Like the Sensor class it has aperture as an instance variable to keep track of the left-hand-
side of its working angle. In addition, it maintains a link to all its flare dispensers using the same
scheme as for MissileDetector and the Environment classes.�
class FlareController is subclass of GLOBAL

– 57 –

instance variables

private aperture : Angle;

ranges : map nat to (Angle * Angle) := {|->};
dispensers : map nat to FlareDispenser := {|->};
inv dom ranges = dom dispensers;
� �

Just like the MissileDetector class it includes the threats and busy instance vari-
ables.�
-- the relevant events to be treated by this controller
threats : seq of (EventId * MissileType * Angle * Time) := [];

-- the status of the controller
busy : bool := false
� �

The constructor is setting the aperture instance variable in the same fashion as the Sensor
class. The addDispenser operation is similar to the addController and addSensor from
the MissileDetector and the Environment classes respectively.�
operations

public FlareController: Angle ==> FlareController
FlareController (papp) == aperture := papp;

public addDispenser: FlareDispenser ==> ()
addDispenser (pfldisp) ==

let angle = aperture + pfldisp.GetAngle() in
(dcl id : nat := card dom ranges + 1;
atomic
(ranges := ranges munion

{id |-> mk_(angle, DISPENSER_APERTURE)};
dispensers := dispensers munion {id |-> pfldisp});

);
� �
The operation Step is used to “step” the algorithm in the same way as the Step operation

from the MissileDetector class: it takes threats and finds the right dispenser to relay the
threat to and calls addThreat on the appropriate dispenser instance. It also need to ensure that
all dispensers will take a Step in their own processing.�
public Step: () ==> ()
Step() ==

(if threats <> []
then def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then dispensers(id).addThreat(evid,pmt,pt);

busy := len threats > 0;
for all id in set dom dispensers do

dispensers(id).Step());
� �
The getAperture operation gets the left hand-side start point and opening angle and yield

a pair of angles in the same way as getAperture from the Sensor class.�
public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_(aperture, FLARE_APERTURE);
� �

Just like the MissileDetector class the addThreat, getThreat and isFinshed
operations are present here.�
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);

private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time
:= hd threats;

threats := tl threats;
return res);

public isFinished: () ==> bool
isFinished () ==

return forall id in set dom dispensers &
dispensers(id).isFinished();

end FlareController
� �
3.5.8 The Flare Dispenser Class
The FlareDispenser class is responsible for firing the actual flares according to the plan for
the given missile id. The responseDB value contains a mapping from MissileType to such
a Plan.�
class FlareDispenser is subclass of GLOBAL

values

responseDB : map MissileType to Plan =
{<MissileA> |-> [mk_(<FlareOneA>,900),

mk_(<FlareTwoA>,500),
mk_(<DoNothingA>,100),
mk_(<FlareOneA>,500)],

<MissileB> |-> [mk_(<FlareTwoB>,500),
mk_(<FlareTwoB>,700)],

<MissileC> |-> [mk_(<FlareOneC>,400),
mk_(<DoNothingC>,100),
mk_(<FlareTwoC>,400),

– 59 –

mk_(<FlareOneC>,500)] };
� �
In the same way the missilePriority provides information about the priority for the

different types of missiles.�
missilePriority : map MissileType to Time =

{ <None> |-> 0,
<MissileA> |-> 1,
<MissileB> |-> 2,
<MissileC> |-> 3 }
� �
Plan’s are structured as a sequence of PlanStep’s.�

types

public Plan = seq of PlanStep;

public PlanStep = FlareType * Time;
� �
FlareDispenser contains a number of instance variables for keeping track of the current

status of the flare dispenser.�
instance variables

public curplan : Plan := [];
curprio : nat := 0;
busy : bool := false;
aperture : Angle;
eventid : [EventId];
� �

The constructor sets the aperture instance variable in the same way as for the constructor
of the Sensor and FlareController classes. The GetAngle provides the aperture in
the usual fashion.�
operations

public FlareDispenser: nat ==> FlareDispenser
FlareDispenser(ang) ==

aperture := ang;

public GetAngle: () ==> nat
GetAngle() ==

return aperture;
� �
The Step operation is similar to what is found in the MissileDetector and Flare-

Controller classes except that here actual flares are released rather than relaying the informa-
tion to yet another class.�
public Step: () ==> ()
Step() ==

if len curplan > 0

then (dcl curtime : Time := World‘timerRef.GetTime(),
first : PlanStep := hd curplan,
next : Plan := tl curplan;

let mk_(fltp, fltime) = first in
(if fltime <= curtime
then (releaseFlare(eventid,fltp,fltime,curtime);

curplan := next;
if len next = 0
then (curprio := 0;

busy := false))
)

);
� �
The addThreat operation is used from the Flare-Controller’s to insert the event of a

new missile detected. Here the priority of the missile is essential to determine whether any existing
treatment of another missile shall be interrupted.�
public addThreat: EventId * MissileType * Time ==> ()
addThreat (evid, pmt, ptime) ==

if missilePriority(pmt) > curprio
then (dcl newplan : Plan := [],

newtime : Time := ptime;
-- construct an absolute time plan
for mk_(fltp, fltime) in responseDB(pmt) do

(newplan := newplan ˆ [mk_ (fltp, newtime)];
newtime := newtime + fltime);

-- immediately release the first action
def mk_(fltp, fltime) = hd newplan;

t = World‘timerRef.GetTime() in
releaseFlare(evid,fltp,fltime,t);

-- store the rest of the plan
curplan := tl newplan;
eventid := evid;
curprio := missilePriority(pmt);
busy := true)

pre pmt in set dom missilePriority and
pmt in set dom responseDB;
� �

The releaseFlare operation is simply communicating to the environment using the oper-
ation called handleEvent from the Environment class.�
private releaseFlare: EventId * FlareType * Time * Time ==> ()
releaseFlare (evid,pfltp, pt1, pt2) ==

World‘env.handleEvent(evid,pfltp,aperture,pt1,pt2);
� �
Finally the isFinished operation is defined in terms of checking whether the operation

FlareDispenser is busy.�
public isFinished: () ==> bool
isFinished () ==

return not busy

– 61 –

end FlareDispenser
� �
3.5.9 The Timer Class
The Timer class is used to control evolution of time throughout the sequential model. To get an
unambiguous notion of time, it is important that only a single instance of this class exists. For this
reason, the class is following the singleton pattern. The constructor of the class is private, so
all classes in the system that needs to access time must use the operation GetInstance to get
the singleton instance.�
class Timer

instance variables

private static timerInstance : Timer := new Timer();

operations

private Timer: () ==> Timer
Timer() ==

skip;

public static GetInstance: () ==> Timer
GetInstance() ==

return timerInstance;
� �
The Timer has one instance variable called currentTime representing the current time in

the system.�
class Timer

instance variables

currentTime : nat := 0;
� �
Time is incremented in the system in units of the constant value stepLength.�

values

stepLength : nat = 100;
� �
The operation StepTime is used to progress time in the system.�

public StepTime : () ==> ()
StepTime() ==

currentTime := currentTime + stepLength;
� �
The operation GetTime is used to read the current time.�

public GetTime : () ==> nat
GetTime() ==

return currentTime;

end Timer
� �
3.5.10 The IO Class
The class IO is the VDM++ standard input/output library. It needs no further explanation.�
class IO

-- Overture STANDARD LIBRARY: INPUT/OUTPUT
-- --
--
-- Standard library for the Overture Interpreter. When the interpreter
-- evaluates the preliminary functions/operations in this file,
-- corresponding internal functions is called instead of issuing a run
-- time error. Signatures should not be changed, as well as name of
-- module (VDM-SL) or class (VDM++). Pre/post conditions is
-- fully user customisable.
-- Dont care’s may NOT be used in the parameter lists.
--
-- The in/out functions will return false if an error occurs. In this
-- case an internal error string will be set (see ’ferror’).

types

public
filedirective = <start>|<append>

functions

-- Write VDM value in ASCII format to std out:
public
writeval[@p]: @p -> bool
writeval(val)==

is not yet specified;

-- Write VDM value in ASCII format to file.
-- fdir = <start> will overwrite existing file,
-- fdir = <append> will append output to the file (created if
-- not existing).
public
fwriteval[@p]:seq1 of char * @p * filedirective -> bool
fwriteval(filename,val,fdir) ==

is not yet specified;

-- Read VDM value in ASCII format from file
public

– 63 –

freadval[@p]:seq1 of char -> bool * [@p]
freadval(f) ==

is not yet specified
post let mk_(b,t) = RESULT in not b => t = nil;

operations

-- Write text to std out. Surrounding double quotes will be stripped,
-- backslashed characters should be interpreted.
public
echo: seq of char ==> bool
echo(text) ==

fecho ("",text,nil);

-- Write text to file like ’echo’
public
fecho: seq of char * seq of char * [filedirective] ==> bool
fecho (filename,text,fdir) ==

is not yet specified
pre filename = "" <=> fdir = nil;

-- The in/out functions will return false if an error occur. In this
-- case an internal error string will be set. ’ferror’ returns this
-- string and set it to "".
public
ferror:() ==> seq of char
ferror () ==

is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static print: ? ==> ()
print(arg) ==

is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static printf: seq of char * seq of ? ==> ()
printf(format, args) ==

is not yet specified;

end IO
� �
3.5.11 Validation of the Model
As for the VDM-SL model there is a need to validate the correct behaviour of the sequential
VDM++ model presented above. In this case the input and output is done using the standard IO
class. Thus one needs to make updates to the scenario.txt file to test the model with new
possible input. Again one would start this by providing simple test cases and then gradually make

them more and more complex. In this case the validation of the correct behaviour is complicated
by the FlareDispenser’s coping with different angles (because their angles are relative to the
FlareController they are assigned to) will report their own angle only. We leave it as an
exercise for the reader to update the model to yield the real angle (combining the angle for the
FlareController and the FlareDispenser).

There is a rather complex scenario.txt available in the electronic version of this model
on the web that is sufficient to ensure that all parts of the model have been exercised at least once
just by interpreting new World().Run(). Again is this documented using the test coverage
feature from Overture. In this sequential model in VDM++ there is still a considerable amount of
abstracting away from different timing delays. However, it still makes sense to inspect the specific
timing requirements for the system (listed as item 3 and 4 on page ??). Both of these timing
requirements are also validated with the given scenarios.

3.5.12 Summary

In Section ?? a more design-oriented model of the counter measures system has been presented.
This model breaks the system into its static components (classes) but it does not yet deal with
the dynamic architecture (threads). The main virtue of this model is the emphasis on functionally
correct behaviour using the envisaged static components. The precision of the model here enables
validation using traditional testing techniques.

This model was tested with test cases conceptually identical to those used for the VDM-SL
model in Section ??. In this way the old test cases were reused during host acceptance testing, and
the VDM-SL model was used as an oracle to compare the functional behaviour of this sequential
VDM++ model. Whenever one is reusing such test cases it may be necessary to include more test
cases to achieve the desired test coverage for the new model.

What can be learnt from this sequential design model is that we now have a common un-
derstanding of the general structural break down of the counter measures system into its static
components. In addition we have validated that the new model functionally corresponds to the
behaviour described at the more abstract level in Section ??.

3.6 Concurrent VDM++ Design Model

In this section the focus will be on the differences that has been made to the sequential counter
measures model to achieve a concurrent design model. A full listing of all the classes is present in
Appendix ?? and an overview of the new class diagram is given in Figure ??.

From the sequential model four of the classes will get active threads because they have in-
dependent computations that can be carried out. These are the Environment, the Missile-
Detector, the FlareController and the FlareDispenser classes. Note that this in-
cludes the class that had the overall control in the sequential model (Environment) and all the
classes that had a Step operation.

– 65 –

Figure 3.7: Class Diagram for the Concurrent Counter Measures Model

In addition to these changes the way timing is treated is changed so the Timer class is re-
placed with a more elaborate treatment of time. This is done using the TimeStamp class and the
BaseThread class, which may be reused directly for other concurrent VDM++ models following
the same principles.

Communication occurs between the sensor and the missile detector (unidirectional) and be-
tween the missile detector and the flare controller (bidirectional). To ensure correct sequencing of
the communication, synchronization is used.

We now present the concurrent model on a class by class basis. The classes GLOBAL, Sensor
and IO are unchanged from the previous model, so are not given again here.

3.6.1 Introducing the BaseThread and TimeStamp Classes
In order to ensure that the different active instances get a chance of stepping in sync with each
other both a BaseThread and a TimeStamp class needs to be introduced. The BaseThread
class is used as a superclass for all active classes that need a chance to take a step. It is able to
handle both periodic as well as aperiodic threads. It is defined as:�
class BaseThread

types

public static ThreadDef ::
p : nat1
isP : bool;

instance variables

protected period : nat1 := 1;

protected isPeriodic : bool := true;

protected registeredSelf : BaseThread;
protected timeStamp : TimeStamp := TimeStamp‘GetInstance();

operations

protected BaseThread : BaseThread ==> BaseThread
BaseThread(t) ==
(registeredSelf:= t;
timeStamp.RegisterThread(registeredSelf);
if(not timeStamp.IsInitialising())
then start(registeredSelf);
);
� �

Note how threads get started in the constructor if we are not initialising the overall collection
of classes. For this to happen correctly, all classes inheriting from BaseThread must call the
super-constructor explicitly passing a reference to self. An example of this can be seen in the
Environment class, which also shows how to change the default values of the instance variables
p specifying the length of a period and isP that specifies if the thread is periodic or not.�
class Environment is subclass of BaseThread

operations

public Environment: seq of char * [ThreadDef] ==> Environment
Environment (fname, tDef) ==
(if tDef <> nil
then (period := tDef.p;

isPeriodic := tDef.isP;
);

BaseThread(self);
);
� �
All subclasses of the BaseThread class need to have a Step operation implementing the

abstract operation defined in BaseThread.�
Step : () ==> ()
Step() ==

is subclass responsibility
� �
The active thread depends upon whether we have a periodic thread or not:�

thread
(if isPeriodic
then (while true

do
(Step();
timeStamp.WaitRelative(period);
)

)

– 67 –

Figure 3.8: Class Diagram for Time Stamp Pattern

else (Step();
World‘timerRef.WaitRelative(0);
timeStamp.UnRegisterThread(registeredSelf);
)

);

end BaseThread
� �
The TimeStamp singleton class maintains a map from thread ids to time (wakeUpMap),

representing when a particular thread should be woken. The other instance variable in the class
represents the current time. Note that this concept is orthogonal to the notion of simulated time
described earlier in this document.�
class TimeStamp

values

public stepLength : nat = 1;

instance variables

currentTime : nat := 0;
wakeUpMap : map nat to [nat] := {|->};
barrierCount : nat := 0;
registeredThreads : set of BaseThread := {};
isInitialising : bool := true;
-- singleton instance of class
private static timeStamp : TimeStamp := new TimeStamp();
� �

To get the singleton instance of the TimeStamp class the operation GetInstance is called.

�
operations

-- private constructor (singleton pattern)
private TimeStamp : () ==> TimeStamp
TimeStamp() ==

skip;

-- public operation to get the singleton instance
public static GetInstance: () ==> TimeStamp
GetInstance() ==

return timeStamp;
� �
Whenever a thread is started it gets registered with a reference to it. This happens automatically

in the constructor of the BaseThread.�
public RegisterThread : BaseThread ==> ()
RegisterThread(t) ==
(barrierCount := barrierCount + 1;
registeredThreads := registeredThreads union {t};
);

public UnRegisterThread : BaseThread ==> ()
UnRegisterThread(t) ==
(barrierCount := barrierCount - 1;
registeredThreads := registeredThreads \ {t};
);
� �

When all threads have registered themselves and initialisation is finished all these threads can
be started by explicitly calling the operation DoneInitialising.�
public IsInitialising: () ==> bool
IsInitialising() ==

return isInitialising;

public DoneInitialising: () ==> ()
DoneInitialising() ==
(if isInitialising
then (isInitialising := false;

for all t in set registeredThreads
do

start(t);
);

);
� �
To model periodic behaviour, a client can be put to sleep using WaitRelative.�

public WaitRelative : nat ==> ()
WaitRelative(val) ==

WaitAbsolute(currentTime + val);
� �

– 69 –

Absolute waits are performed using WaitAbsolute. Note that if time given is less than the
current time, then the client will never be woken.�
public WaitAbsolute : nat ==> ()
WaitAbsolute(val) ==
(AddToWakeUpMap(threadid, val);
-- Last to enter the barrier notifies the rest.
BarrierReached();
-- Wait till time is up
Awake();

);
� �
AddToWakeUpMap is used to add new waits to the wakeUpMap.�

AddToWakeUpMap : nat * nat ==> ()
AddToWakeUpMap(tId, val) ==

wakeUpMap := wakeUpMap ++ { tId |-> val };
� �
The operation BarrierReached evaluates the wakeUpMap when all period threads have

entered the mapping. Time is incremented and all threads that needs to be awoken is removed from
the wakeUpMap.�
BarrierReached : () ==> ()
BarrierReached() ==

while (card dom wakeUpMap = barrierCount) do
(currentTime := currentTime + stepLength;
let threadSet : set of nat = {th | th in set dom wakeUpMap

& wakeUpMap(th) <> nil and
wakeUpMap(th) <= currentTime }

in
for all t in set threadSet
do

wakeUpMap := {t} <-: wakeUpMap;
)

post forall x in set rng wakeUpMap & x = nil or x >= currentTime;
� �
All threads block on the operation Awake until they are removed from the wakeUpMap as

described above.�
operations

Awake: () ==> ()
Awake() == skip;

sync
per Awake => threadid not in set dom wakeUpMap;
� �
The current time of the class may be obtained via the GetTime operation.�

public GetTime : () ==> nat
GetTime() ==

return currentTime;
� �

Since barrierCount, registeredThreads and wakeUpMap is manipulated by a num-
ber of different operations, we need to set access to them to be mutually exclusive.�
sync

mutex(IsInitialising);
mutex(DoneInitialising);
mutex(AddToWakeUpMap);
mutex(NotifyThread);
mutex(BarrierReached);
mutex(AddToWakeUpMap, NotifyThread);
mutex(AddToWakeUpMap, BarrierReached);
mutex(NotifyThread, BarrierReached);
mutex(AddToWakeUpMap, NotifyThread, BarrierReached);

end TimeStamp
� �
3.6.2 Updating the CM Class

All constructors from classes that need to be active must be updated with extra parameters indicat-
ing if they are periodic and if so what the required period is. This update of the constructors needs
to be used inside the CM class. In this case we wish them all to be periodic with a period of one
time unit. Thus CM becomes:�
class CM

instance variables

-- maintain a link to the detector
public static detector : MissileDetector := new MissileDetector(1, true);

-- sensors are unchanged
public static controller0 : FlareController := new FlareController(0, 1, true);
public static controller1 : FlareController :=

new FlareController(120, 1, true);
public static controller2 : FlareController :=

new FlareController(240, 1, true);

public static dispenser0 : FlareDispenser := new FlareDispenser(0, 1, true);
public static dispenser1 : FlareDispenser := new FlareDispenser(30, 1, true);
public static dispenser2 : FlareDispenser := new FlareDispenser(60, 1, true);
public static dispenser3 : FlareDispenser := new FlareDispenser(90, 1, true);

public static dispenser4 : FlareDispenser := new FlareDispenser(0, 1, true);
public static dispenser5 : FlareDispenser := new FlareDispenser(30, 1, true);
public static dispenser6 : FlareDispenser := new FlareDispenser(60, 1, true);
public static dispenser7 : FlareDispenser := new FlareDispenser(90, 1, true);

public static dispenser8 : FlareDispenser := new FlareDispenser(0, 1, true);
public static dispenser9 : FlareDispenser := new FlareDispenser(30, 1, true);

– 71 –

public static dispenser10 : FlareDispenser := new FlareDispenser(60, 1, true);
public static dispenser11 : FlareDispenser := new FlareDispenser(90, 1, true);

end CM
� �
3.6.3 Updating the World Class
The timerRef instance variable is changed from a reference to the Timer class to a reference
to the TimeStamp singleton class. This is done in order to synchronize properly between the
different independent threads.

However the Run operation is drastically changed to indicate that now initialisation is com-
plete. Thus, it now becomes:�
-- the run function blocks the user-interface thread
-- until all missiles in the file have been processed
public Run: () ==> ()
Run () ==

(timerRef.DoneInitialising();
-- wait for the environment to handle all input
env.isFinished();
-- wait for the missile detector to finish
CM‘detector.isFinished();
-- print the result
env.showResult())
� �
Note how this new definition relies upon the different operations having permission predicates

defined such that they are blocked until they are indeed ready to perform the desired action.

3.6.4 Updating the Environment Class
The Environment class needs to be declared active so it must now inherit from the BaseThread
class:�
class Environment is subclass of GLOBAL, BaseThread
� �

In addition the Run operation is replaced with a Step operation. This looks like:�
public Step : () ==> ()
Step() ==
(if World‘timerRef.GetTime() < simtime
then createSignal()
else busy := false;
);
� �

In essence Step here is similar but a bit simpler than the Run operation. Note that a new
instance variable called simtime is introduced. It is defined as:�
simtime : Time;
� �

and it is initialised in the Environment constructor. This is used to simulate how long time
we at most wish to simulate the entire system. Actually in a case like the CM example where
the system only needs to respond to input events present in the Environment it is not strictly
needed, but since we would also like to be able to describe reactive systems where the system to be
designed is able to react to the absence of events from the Environment this kind of principle
needs to be introduced because in that case it would be needed. The constructor is also extended
with information about its period so it now looks like:�
public Environment: seq of char * [ThreadDef] ==> Environment
Environment (fname, tDef) ==
(def mk_ (-,mk_(timeval,input)) = io.freadval[InputTP](fname) in

(inlines := input;
simtime := timeval);

if tDef <> nil
then (period := tDef.p;

isPeriodic := tDef.isP;
);

BaseThread(self);
);
� �

where period and isPeriodic are new instance variables declared in the BaseThread su-
perclass.

The isFinished operation is also simplified by moving its predicate into a permission pred-
icate. Finally a synchronisation constraint is made for the operations called handleEvent and
createSignal ensuring that they cannot be invoked if they are already running (the mutex
predicates in the sync section below).�
public isFinished : () ==> ()
isFinished () == skip;

sync

mutex (handleEvent);
mutex (createSignal);
per isFinished => not busy;
� �
3.6.5 Updating the Missile Detector Class

Just like for the Environment class the MissileDetector class needs to inherit from the
BaseThread class:�
class MissileDetector is subclass of GLOBAL, BaseThread
� �
In the same way the constructor is extended with the periodic information.

The Step operation is split into a test and an auxiliary operation called processSensor:�
public Step: () ==> ()

– 73 –

Step() ==
if len threats > 0
then processSensor();

processSensor: () ==> ()
processSensor() ==
(def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then controllers(id).addThreat(evid,pmt,pa,pt);

busy := len threats > 0);
� �
The operation isFinished is different from the sequential model, since it uses a permission

predicate to block until the thread has finished. This means that the for all quantification is
changed to a loop over all the controllers.�
public isFinished: () ==> ()
isFinished () ==

for all id in set dom controllers do
controllers(id).isFinished()
� �

From a synchronisation point of view the Step and processSensor operations need to
be protected. In the same way the addThreat and getThreat operations modify the same
instance variables and therefore they need to be declared mutual exclusive using a mutex predi-
cate. In addition a permission predicate is introduced for the getThreat and the isFinished
operations. getThreat is used as a “blocking read” from the main thread of control of the
MissileDetector.�
sync

mutex (Step);
mutex (processSensor);
mutex (addThreat,getThreat);

per getThreat => len threats > 0;
per isFinished => not busy
� �
3.6.6 Updating the Flare Controller Class

Just like for the MissileDetector class also needs to inherit from the BaseThread class. In
addition the Step operation is adjusted in a fashion similar to what we saw for the Missile-
Detector class:�
operations

public Step: () ==> ()
Step() ==

if len threats > 0
then processThreat();

processThreat: () ==> ()
processThreat() ==

(def mk_ (evid,pmt, pa, pt) = getThreat() in
for all id in set dom ranges do

def mk_(papplhs, pappsize) = ranges(id) in
if canObserve(pa, papplhs, pappsize)
then dispensers(id).addThreat(evid,pmt,pt);

busy := len threats > 0);
� �
The operation isFinished is different from the sequential model, since it uses a permission

predicate to block until the thread has finished. This means that the forall quantification is
changed to a loop over all the dispensers.�
public isFinished: () ==> ()
isFinished () ==

for all id in set dom dispensers do
dispensers(id).isFinished();
� �

From a synchronisation point of view addThreat and getThreat modify the same in-
stance variables and therefore they need to be declared mutual exclusive using a mutex predicate
just like for the MissileDetector class above. In addition a permission predicate is introduced
for the getThreat and the isFinished operations. getThreat is used as a “blocking read”
from the main thread of control of the FlareController.�
sync

mutex (addThreat,getThreat);
mutex (Step);
mutex (processThreat);

per getThreat => len threats > 0;
per isFinished => not busy
� �
3.6.7 Updating the Flare Dispenser Class

Just like for the FlareController class also needs to inherit from the BaseThread class.
In addition the Step operation is adjusted in a fashion similar to what we saw for the Flare-
Controller class: The majority of the functionality is placed inside a new operation called
evalQueue.�
public Step: () ==> ()
Step() ==

evalQueue();

private evalQueue: () ==> ()

– 75 –

evalQueue () ==
(if len curplan > 0
then (dcl curtime : Time := World‘timerRef.GetTime(),

done : bool := false;
while not done do

(dcl first : PlanStep := hd curplan,
next : Plan := tl curplan;

let mk_(fltp, fltime) = first in
(if fltime <= curtime
then (releaseFlare(eventid,fltp,fltime,curtime);

curplan := next;
if len next = 0
then (curprio := 0;

done := true;
busy := false))

else done := true))));
� �
As previously the isFinished operation is changed by turning the predicate into a per-

mission predicate. From a synchronisation point of view a mutex predicate is used for the
addThreat and the evalQueue operations.�
public isFinished: () ==> ()
isFinished () ==

skip

sync

mutex (addThreat,evalQueue);
per isFinished => not busy
� �

3.6.8 Validation of the Model

As for the sequential VDM++ model presented earlier there is a need to validate the correct be-
haviour of the concurrent VDM++ model presented above. Both of these models use the standard
IO class for input and output. As previously one would start this by providing simple test cases and
then gradually make them more and more complex. Since the input format used for the concurrent
VDM++ model is identical to the one used for the sequential VDM++ model all the test cases with
different scenario.txt files can be reused without any changes. The issue with the relative
angles for the FlareDispenser’s are still present so the interested reader can do the same kind
of update to this model.

As for the sequential VDM++ model the electronic version of this model available on the web
there is a rather complex scenario.txt that is sufficient to ensure that all parts of the model
have been exercised at least once just by interpreting new World().Run(). Again is this
documented using the test coverage feature from Overture.

3.6.9 Summary

In Section ?? a concurrent design-oriented model of the counter measures system has been pre-
sented. This model reuses the breakdown into its static components (classes) from Section ??. In
addition it adds the dynamic architecture (threads). The main virtue of this model is the intro-
duction of the dynamic architecture while still ensuring the functionally correct behaviour. The
precision of the model here again enables validation using traditional testing techniques.

This model was tested with the test cases used for the VDM-SL model and the sequential
VDM++ model in Sections ?? and ??. In this way old test cases were reused during system accep-
tance testing, and the VDM-SL model was used as an oracle to compare the functional behaviour
of this concurrent VDM++ model in the same way as for the sequential VDM++ model.

What can be learnt from this concurrent design model is that we now have a common un-
derstanding of the dynamic architecture of the system. In addition we have validated that the
new model functionally corresponds to the behaviour described at the more abstract levels in Sec-
tions ?? and ??. This validation was again conducted using traditional testing techniques and a
large amount of reuse of the test cases from the sequential VDM++ model was possible.

3.7 Real-Time Concurrent and Distributed VDM-RT Design
Model

The real-time model differs from the concurrent model in a number of ways:

• The CM class is changed into a system (by changing the class keyword to a system key-
word). In addition static instance variables are introduced for the CPU’s and the BUS’es that
are desired for deployment of the system functionality. Finally a constructor is introduced
for the CM system which deploys the different statically declared instance variables to the
different CPU’s.

• A number of the operations from the concurrent model that simply needs to signal another
thread are turned asynchronous using the async keyword.

• Duration statements can be used to indicate portions of the model whose execution time is
known from previous experience.

• Cycle statements can be used to indicate portions where the number of clock cycles is known
in advance from earlier experience.

Otherwise the model is largely unchanged from the concurrent one. An overview of the differ-
ent classes can be seen from Figure ??.

– 77 –

Figure 3.9: Class Diagram for the Real-Time Distributed Counter Measures Model

Figure 3.10: CPU Architecture for the Distributed Counter Measures Model

3.7.1 Updating the Counter Measures Class

As explained above the CM class have a number of new instance variables. The experimental
hardware architecture considered here consists of six CPU’s and three BUS’es. The declaration of
these looks like:�
instance variables
cpu1 : CPU := new CPU (<FCFS>,1E6);
cpu2 : CPU := new CPU (<FCFS>,1E6);
cpu3 : CPU := new CPU (<FP>,1E9);
cpu4 : CPU := new CPU (<FCFS>,1E6);
cpu5 : CPU := new CPU (<FCFS>,1E6);
cpu6 : CPU := new CPU (<FCFS>,1E6);
bus1 : BUS := new BUS (<FCFS>,1E6,{cpu1,cpu3});
bus2 : BUS := new BUS (<FCFS>,1E6,{cpu2,cpu3});
bus3 : BUS := new BUS (<FCFS>,1E6,{cpu3,cpu4,cpu5,cpu6});
� �

A graphical overview of this hardware architecture can be automatically produced using the
RealTime Log Viewer feature from Overture. For this rather complex architecture it looks as
shown in Figure ??.

The CM constructor then deploys all static instances to these different CPU’s and set priorities
for a number of the operations used at the different CPU’s.�
operations

public CM: () ==> CM
CM () ==

(cpu3.deploy(detector);
cpu3.setPriority(MissileDetector‘addThreat,100);
cpu1.deploy(sensor0);
cpu1.setPriority(Sensor‘trip,100);
cpu1.deploy(sensor1);
cpu2.deploy(sensor2);
cpu2.setPriority(Sensor‘trip,100);
cpu2.deploy(sensor3);
cpu3.deploy(controller0);
cpu3.setPriority(FlareController‘addThreat,80);
cpu4.deploy(dispenser0);
cpu4.setPriority(FlareDispenser‘addThreat,100);
cpu4.setPriority(FlareDispenser‘evalQueue,80);
cpu4.deploy(dispenser1);
cpu4.deploy(dispenser2);
cpu4.deploy(dispenser3);
cpu3.deploy(controller1);
cpu5.deploy(dispenser4);
cpu5.setPriority(FlareDispenser‘addThreat,100);
cpu5.setPriority(FlareDispenser‘evalQueue,80);
cpu5.deploy(dispenser5);
cpu5.deploy(dispenser6);
cpu5.deploy(dispenser7);
cpu3.deploy(controller2);
cpu6.deploy(dispenser8);
cpu6.setPriority(FlareDispenser‘addThreat,100);
cpu6.setPriority(FlareDispenser‘evalQueue,80);
cpu6.deploy(dispenser9);
cpu6.deploy(dispenser10);
cpu6.deploy(dispenser11);
)
� �

3.7.2 Updating the BaseRTThread Class
The BaseThread class used in the concurrent VDM++ model is updated to encompass real-time
information. This updated class is called BaseRTThread.�
class BaseRTThread

types

public static ThreadDef ::
p : nat1

– 79 –

isP : bool
j : nat
d : nat
o : nat;

instance variables

protected period : nat1 := 1000E6;
protected isPeriodic : bool := true;
protected jitter : nat := 0;
protected delay : nat := 0;
protected offset : nat := 0;
� �

The ThreadDef has added parameters for jitter, delay and offset. Additional instance vari-
ables for holding values for these real-time parameters have also been added.

The thread section of the class has also been updated using the periodic definition of
threads using the real-time parameters defined above.�
thread

periodic(period, jitter, delay, offset)(Step);
� �
This has the unfortunate side-effect that the real-time framework described here does not sup-

port non-periodic threads. If non-periodic threads are needed in a real-time model, this can be
done by specifying the non-periodic behaviour in the thread section, and explicitly starting the
non-periodic thread class using the start keyword.

An example of the use of these added real-time parameters can be seen in the CM system class.�
system CM

instance variables

public static dispenser0 : FlareDispenser := new FlareDispenser(0,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));
� �

3.7.3 Updating the RTTimeStamp Class
The TimeStamp has been simplified since periodic threads are supported using the periodic
keyword, and hence threads does not need to be explicitly put to sleep and awoken. This means that
the operations WaitRelative, WaitAbsolute, BarrierReached, AddToWakeUpMap,
NotifyThread, GetTimeand ThreadDone all have been removed from the class. The main
difference is in the sync section, where less operations have to be synchronised. This simplified
class is called RTTimeStamp.�
sync

mutex (RegisterThread);
mutex (UnRegisterThread);
mutex (RegisterThread, UnRegisterThread);
mutex (IsInitialising);

mutex (DoneInitialising);
� �
3.7.4 Updating the World Class
The only change in the World class is the addition of additional parameters in instantiation of the
Environment class.�
public World: () ==> World
World () ==

env := new Environment("scenario.txt",
mk_BaseRTThread‘ThreadDef(1000E6,true,10,900,0));
� �

3.7.5 Updating the Environment Class
The constructor of the Environment has been updated. All active classes now inherit from
BaseRTThread, and parameters for jitter, delay and offset can also be passed in the construc-
tor. Just like in the concurrent model, all active threads must pass a reference to the superclass
BaseRTThread to ensure that all threads are registered correctly.�
class Environment is subclass of GLOBAL, BaseRTThread

operations

public Environment: seq of char * [ThreadDef] ==> Environment
Environment (fname, tDef) ==
(def mk_ (-,input) = io.freadval[seq of inline](fname) in

inlines := input;

if tDef <> nil
then (period := tDef.p;

jitter := tDef.j;
delay := tDef.d;
offset := tDef.o;
);

BaseRTThread(self);
);
� �

Instead of using the timerRef reference the Environment class now makes use of the
special time keyword. This can for example be seen in the operation createSignal where a
duration statement also has been introduced.�
private createSignal: () ==> ()
createSignal () ==

duration (10)
(if len inlines > 0
then (dcl curtime : Time := time, done : bool := false;

while not done do
def mk_ (eventid, pmt, pa, pt) = hd inlines in

– 81 –

if pt <= curtime
then (for all id in set dom ranges do

def mk_(papplhs,pappsize) = ranges(id) in
if canObserve(pa,papplhs,pappsize)
then sensors(id).trip(eventid,pmt,pa);

inlines := tl inlines;
done := len inlines = 0)

else done := true)
else busy := false);
� �

3.7.6 Updating the Sensor Class
The only change necessary for the Sensor class is that the trip operation is made asynchronous
and the use of the time keyword instead of the World‘timerRef.GetTime() expression.
Thus, now the trip operation looks like:�
async public trip: MissileType * Angle ==> ()
trip (pmt, pa) ==

-- log and time stamp the observed threat
detector.addThreat(pmt,pa,time)

pre canObserve(pa, aperture, SENSOR_APERTURE)
� �
3.7.7 Updating the Missile Detector Class
The only update necessary for the MissileDetector class is that the addThreat operation
is made asynchronous.

3.7.8 Updating the Flare Controller Class
Just like for the MissileDetector class the only update necessary for the FlareController
class is that the addThreat operation is made asynchronous.

3.7.9 Updating the Flare Dispenser Class
In the FlareDispenser class the addThreat and the evalQueue operations are made asyn-
chronous. In addition, as for a few other classes above there is now a reference to the time
keyword directly. Thus, these two operations now look like:�
async public addThreat: EventId * MissileType * Time ==> ()
addThreat (evid, pmt, ptime) ==

if missilePriority(pmt) > curprio
then (dcl newplan : Plan := [],

newtime : Time := ptime;
-- construct an absolute time plan
for mk_(fltp, fltime) in responseDB(pmt) do

(newplan := newplan ˆ [mk_ (fltp, newtime)];
newtime := newtime + fltime);

-- immediately release the first action
def mk_(fltp, fltime) = hd newplan in

releaseFlare(evid,fltp,fltime,time);
-- store the rest of the plan
curplan := tl newplan;
eventid := evid;
curprio := missilePriority(pmt);
busy := true)

pre pmt in set dom missilePriority and
pmt in set dom responseDB;

async evalQueue: () ==> ()
evalQueue () ==

duration (10)
(if len curplan > 0
then (dcl curtime : Time := time, done : bool := false;

while not done do
(dcl first : PlanStep := hd curplan,

next : Plan := tl curplan;
let mk_(fltp, fltime) = first in

if fltime <= curtime
then (releaseFlare(eventid,fltp,fltime,curtime);

curplan := next;
if len next = 0
then (curprio := 0;

done := true;
busy := false))

else done := true)));
� �
3.7.10 Validation of the Model

As for the VDM models presented earlier there is a need to validate the correct behaviour of the
real-time and distributed VDM-RT model presented above. Both of these models use the standard
IO class for input and output. As previously one would start this by providing simple test cases
and then gradually make them more and more complex. Since the input format used for the real-
time and distributed VDM-RT model is identical to the one used for the concurrent VDM++ model
all the test cases with different scenario.txt files can be reused again without any changes.
However, due to the timing now being closer to the “real-world” implementation of this system
one needs to expect that the timing of the output is not identical to what was in the previous model.
It is then up to the specifier to judge whether the timings give raise to any kinds of bottlenecks.
Once again the issue with the relative angles for the FlareDispenser’s are still present so the
interested reader can do the same kind of update to this model.

As for the previous VDM++ models the electronic version of this model available on the web
there is a rather complex scenario.txt that is sufficient to ensure that all parts of the model

– 83 –

have been exercised at least once just by interpreting new World().Run(). Again is this
documented using the test coverage feature from Overture.

3.7.11 Summary
In this section we have presented a model of the counter measures system that incorporates timing
information and provides a distributed architecture. It should be pointed out that to some extent this
model is still an idealization of the real world. Our model is deterministic and assumes hardware
performs perfectly and responds within specified intervals, The model also takes quite a restricted
view of what external events may occur. These are not serious flaws in the proposed approach for
two reasons:

• Many of the assumptions made e.g. concerning determinism and hardware behaviour are also
made during host integration testing; the behaviour of the system when these assumptions
are broken could only be tested during target integration testing.

• It is in principal possible to model all manner of events. In particular an “unknown” event
could be modelled, and the system behaviour described in the presence of such events.

However, it is worthwhile noting that work is undergoing to incorporate the appropriate han-
dling of faulty behaviour in the environment is carried out in the DESTECS project [?, ?, ?, ?].

Chapter 4

Synchronization

In this chapter issues relating to synchronization of concurrent threads are addressed. In particu-
lar the primitives for specifying synchronous access to shared objects are described, and further
synchronization mechanisms that build on these primitives are also given.

4.1 Synchronization Primitives
Synchronization in VDM++ is performed using permission predicates. A permission predicate is
an expression specifying the circumstances in which an operation may be executed.�
per operation name => guard condition
� �

The semantics of a permission predicate is that when a client requests an operation call, that
operation’s permission predicate is evaluated. If it is true, execution may proceed and the operation
may be activated; if it is false, the client is blocked and the scheduler is invoked.

Permission predicates are listed in the sync section of a class. As a convenient abbreviation, the
keyword mutex may be used to represent mutual exclusion between operations. This is described
in more detail below, together with the different kinds of guard conditions.

A guard condition has scope over the instance variables of the class. For example, consider the
following specification of a one-place buffer:

�
class Buffer

instance variables
data : [nat] := nil

operations
public Put : nat ==> ()
Put(v) == data := v;

sync
per Put => data = nil;
� �

�
public Get : () ==> nat
Get() ==
let n = data in

(data := nil;
return n)

pre data <> nil

sync
per Get => data <> nil

end Buffer
� �
85

4.1.1 History Counters

A guard condition is also allowed to refer to history counters. These describe the history of a
particular operation. There are three basic history counters:

#req(op) The number of times op has been requested in a particular object;

#act(op) The number of times op has been activated in a particular object;

#fin(op) The number of times op has completed execution in a particular object.

As a simple example, consider an N-place buffer:

�
class BufferN

values
N : nat = 5

instance variables

data : seq of nat := [];
inv len data <= N

operations
public Put : nat ==> ()
Put(v) ==

data := data ˆ [v];
� �

�
public Get : () ==> nat
Get() ==
let n = hd data in
(data := tl data;
return n)

pre data <> []

sync
per Put =>
#fin(Put) - #fin(Get) < N;

per Get =>
#fin(Get) < #fin(Put);

end BufferN
� �
Note that in this example the permission predicates could have been equally well expressed

in terms of the class’s instance variables. However, in general, use of such guards allows more
sophisticated synchronization predicates. For example we can express the requirement that only N
invocations of Put may be active at any time:�
per Put => #fin(Put) - #fin(Get) < N and #fin(Put) = #act(Put);
� �

In addition to the basic history counters, two derived history counters exist:

#active(op) The number of currently active instances of op. So
#active(op) = #act(op) - #fin(op).

waiting(op) The number of non-activated requests for op. So
#waiting(op) = #req(op) - #act(op).

– 87 –

4.1.2 Mutex
It is possible to specify mutual exclusion (mutex) between operation invocations using the basic
history counters. However it is such a common requirement that the keyword mutex may be used
as shorthand for a mutex predicate.

A mutex predicate allows the user to specify either that all operations of the class are to be
executed mutually exclusive, or that a list of operations are to be executed mutually exclusive to
each other. Operations that appear in one mutex predicate are allowed to appear in other mutex
predicates as well, and may also be used in the usual permission predicates. Each mutex predi-
cate will implicitly be translated to permission predicates using history guards for each operation
mentioned in the name list. For instance,�
sync

mutex(opA, opB);
mutex(opB, opC, opD);
per opD => someVariable > 42;
� �

would be translated to the following permission predicates (which are semantically equivalent to
the above expression):�
sync

per opA => #active(opB) = 0;
per opB => #active(opA) = 0 and

#active(opC) + #active(opD) = 0;
per opC => #active(opB) + #active(opD) = 0;
per opD => #active(opB) + #active(opC) = 0 and

someVariable > 42;
� �
Note that it is only permitted to have one explicit permission predicate for each operation in

each class.
A mutex(all) constraint specifies that all of the operations specified in that class and any

superclasses are to be executed mutually exclusively.
It is clear that using mutex, concurrent execution of critical regions can be prevented.

4.2 Wait-Notify
A popular synchronization mechanism is the wait-notify used in the Java programming language
[?]. To understand this concept, consider two threads Producer and Consumer which commu-
nicate by an unsynchronized shared buffer, b as defined below:

�
class UnsyncBuffer

instance variables
data : [nat] := nil

operations

public Put : nat ==> ()
Put(v) ==
data := v;
� ��

public Get : () ==> nat

Get() ==
let n = data in
(data := nil;
return n)

pre data <> nil

end UnsyncBuffer
� �
The unsynchronized buffer is used to communicate data between the producer and consumer

threads.

�
-- Producer thread
while true do

(let v = Produce() in
b.Put(v))
� �

�
-- Consumer thread
while true do

Consume(b.Get())
� �
Of course the problem that arises is that when the consumer thread consumes data, there need

not necessarily be any valid data in the buffer. Moreover, if the producer thread generates data “too
fast” for the consumer, data could be lost.

A wait-notify object allows access to the buffer to be synchronized across the two threads.
Suppose o is a wait-notify object.

�
-- Producer thread
while true do

(let v = Produce() in
b.Put(v)

o.Notify();
o.Wait())
� �

�
-- Consumer thread
while true do

(o.Wait();
Consume(b.Get());
o.Notify())
� �

Following a call to o.Wait, a thread blocks until another thread calls o.Notify. Thus in
this example we can see that following production of a value, the producer thread places this in
the buffer, notifies the consumer thread and then blocks. The consumer thread is blocked until it is
notified by the producer thread; it then consumes the data in the buffer, and afterwards notifies the
producer thread.

The advantage of using Wait-Notify is that it can be used to synchronize access to an arbitrary
shared object; that is, this shared object need not have been designed with sharing in mind. This
greatly simplifies specification and design, as consideration of synchronization can thus be safely
postponed until design of the dynamic architecture begins.

Care must be taken with the initialization of a wait-notify mechanism, otherwise deadlocks
can occur. For instance in the above example, if the producer thread executes first, following
its notify both producer and consumer are waiting for a notify, so this must be supplied
externally. Alternatively the threads can be organized in such a way as to force the consumer to be
executed first.

– 89 –

�
class Shared

instance variables
data : seq of nat := []

operations
public Put : nat ==> ()
Put(n) ==

data := data ˆ [n];

public Get : () ==>
seq of nat

Get() == return data

sync

mutex(Put);
mutex(Put,Get)

end Shared

class SubThread

instance variables
s : Shared

operations
� �

�
public Init : Shared ==> ()
Init(ns) == s := ns

thread
for i = 1 to 100 do
s.Put(i * i)

end SubThread

class MainThread

operations

public Main :
() ==> seq of nat

Main() ==
(dcl s : Shared :=

new Shared(),
t : SubThread :=

new SubThread();
t.Init(s);
start(t);
return s.Get()

)

end MainThread
� �
Figure 4.1: Not Waiting For Thread Completion

4.3 Thread Completion

A common use of permission predicates is to block the default thread until all other threads have
completed. For example, consider the model in Figure ??.

When Main executes, it creates and starts an instance of SubThread, but it delivers the
contents of the shared object before SubThread has necessarily had a chance to place any data
in it.

In order to overcome this problem, the shared object should be used to determine comple-
tion. An operation IsFinished should be added to the specification of Shared. Calls to this
operation should block until it is determined that SubThread has completed.

The specification for operation Main would then be:�
public Main : () ==> seq of nat
Main() ==

(dcl s : Shared := new Shared(),

t : SubThread := new SubThread();
t.Init(s);
start(t);
s.IsFinished();
return s.Get()

)
� �
The determination of thread completion can be achieved implicitly or explicitly. The implicit

approach is based on the amount of data generated by the thread. For instance if it is known that
the thread will generate 100 values, this can be used to determine completion:

�
class Shared

instance variables
data : seq of nat := []

operations
public Put : nat ==> ()
Put(n) ==

data := data ˆ [n];

public Get :
() ==> seq of nat

Get() == return data;
� �

�
public IsFinished :

() ==> ()
IsFinished() == skip;

sync

mutex(Put);
mutex(Put,Get);
per IsFinished =>

#fin(Put) = 100

end Shared
� �
In the explicit approach, the thread which is being waited on informs the shared object of its

completion:

�
class Shared

instance variables

data : seq of nat := [];
finished : bool := false;

operations

public Put : nat ==> ()
Put(n) == data := data ˆ [n];

public Get :
() ==> seq of nat

Get() == return data;
� �

�
public IsFinished :

() ==> ()
IsFinished() == skip;

public Finished : () ==> ()
Finished() ==
finished := true

sync
mutex(Put);
mutex(Put,Get);
mutex(Finished);
per IsFinished => finished

end Shared
� �

– 91 –

4.4 Summary
In this chapter difference mechanisms for synchronization have been presented: synchronization
primitives using permission predicates, and the Wait-Notify mechanism. In general synchroniza-
tion based on permission predicates can be extremely powerful, as such predicates are highly
expressive. The price of this power is that it can be very difficult to debug models suffering from
deadlocks if such permission predicates are used. Therefore it is recommended that wherever pos-
sible the wait-notify mechanism is used, as it is easy to debug1 breakpoints can be placed within
the operations of the wait-notify class to help identify any problems.

1Alternatively the trace file produced by Overture or VDMTools can be used to get insight into problems such as
deadlocks.

Chapter 5

Periodicity

Many real-time systems have an element of periodicity – something which repeats with fixed fre-
quency. In this chapter we describe how periodicity can be modelled.

5.1 Periodic Threads
Threads may be periodic: that is, an operation can be called with fixed frequency. A typical use of
this is to poll an external sensor.�
class Sensor

operations
public GetData : () ==> nat
GetData() ==

is not yet specified

end Sensor

class SensorPoll

instance variables
lastReading : [nat] := nil;
sensor : Sensor

operations
public Init : Sensor ==> ()
Init(ns) ==

sensor := ns;

PollSensor : () ==> ()
PollSensor() ==

lastReading :=
sensor.GetData()

thread

93

periodic (100,10,90,0) (PollSensor)

end SensorPoll

class Main

operations
public Run : () ==> ()
Run() ==
(dcl sp : SensorPoll :=

new SensorPoll(),
s : Sensor := new Sensor();

sp.Init(s);
start(sp)

)

end Main
� �
Here the sensor thread sp will execute approximately every 100 time units (1 time unit = 1

nanosecond) following execution of the statement start(sp).
Note that in a simple system such as the one above, PollSensor will be invoked approxi-

mately every 100 time units. The second parameter to the periodic statement indicates that a jitter
of up to 10 time units can be allowed for the periodic invocation of this thread. The third parame-
ter indicates that there is going to be at least 90 time units between two instances of this periodic
thread. Finally, the last parameter indicates that no offset is required for the invocation of this
periodic thread. This is a feature that is most valuable if a number of threads are started at the same
time, and there is a desire to carry them out in a special order.

In systems with more threads, the periodicity merely informs the scheduler when a particular
periodic thread is schedulable. Thus in practice it is possible for periodic threads to be delayed.
In fact, it is often an interesting property of a model that periodic threads are being delayed, as it
could indicate that portions of the model need to be redesigned. Therefore in the time trace file a
special event is output if a periodic thread is delayed.

5.1.1 Periodic Threads and Scheduling

Periodic threads are subject to the same scheduling policy as other threads. This has a number of
implications for their use. Specifically:

• Even if a periodic thread which has not completed by the end of its period another periodic
thread will be made possible at the next period. Thus it is possible to multiple invocations
of a periodic thread at the same time. However, as a user one should be careful about such
usage, since it means that an increasing number of threads may be produced.

• Under priority-based scheduling, a periodic thread could miss its deadline because a higher
priority thread has been scheduled.

– 95 –

5.2 Modelling Periodic Events

Typically, an external event is modelled as an operation invocation. Thus to model a periodic event,
it should be modelled as a periodic operation invocation. For example, suppose we wish to model
a clock:�
class Clock

instance variables
curtime : nat := 0

operations
public GetTime : () ==> nat
GetTime() == return curtime;

Tick : () ==> ()
Tick() == curtime := curtime + 1

thread
periodic (100,0,0,0)(Tick)

end Clock
� �
An instance of Clock has a thread which will be executed every 100 time units. Such a clock

could be shared amongst several threads, and used to synchronize behaviour across the sharing
threads. Other examples of timers can be found in Section ?? and in Appendix ??.

5.3 Statically Schedulable Systems

Systems which are known to be statically schedulable with specific periods can be simply modelled
using periodic threads. For example suppose that we have a system with three threads A, B and C,
which have frequencies 30, 70 and 110 time units respectively.�
class A
...
thread

periodic (30,0,0,0) (OpA)
end A

class B
...
thread

periodic (70,0,0,0) (OpB)
end B

class C
...
thread

periodic (110,0,0,0) (OpC)
end C

class Main

operations
public Run : () ==> ()
Run() ==
(dcl a : A := new A(),

b : B := new B(),
c : C := new C();

...
startlist({a,b,c});
...

)
end Main
� �

In case it was desirable to let one of them start later than the others it would be possible to set
the offset to a positive value for that one.

5.4 Summary
Systems exhibiting periodicity can be described using VDM in a straightforward manner, using
language primitives. Based on these primitives, features such as timers and clocks can be built into
models.

Note that in general, if a system is statically schedulable and does not have high CPU utilization
requirements, then rate monotonic analysis [?, ?] may be used to schedule the system. In this
case the problems of meeting deadlines etc are automatically resolved, so for such systems rate
monotonic analysis is preferable.

Chapter 6

Scheduling Policies

Overture and VDMTools supports a number of different scheduling policies. In this chapter we
describe these various policies, and summarize the implications for the model of each particular
policy.

At any point during execution Overture and VDMTools employs two complementary schedul-
ing policies: the primary scheduling policy and secondary scheduling policy.

The primary scheduling policy determines when a thread should be descheduled. The sec-
ondary scheduling policy determines the order in which the scheduler tries to find the next thread
to schedule. We consider each category separately.

6.1 Primary Scheduling Algorithm

Overture and VDMTools offers a choice of primary scheduling algorithm between time limited and
cooperative. In general, a thread executes until an operation call is made, for which the permission
predicate is false, at which point the thread blocks.

In a cooperative scheduling algorithm, there is no other way in which a thread may be desched-
uled: each thread is allowed to run to completion.

In a time limited scheduling algorithm no thread is allowed to execute continuously for more
than some defined period; when this period is complete the scheduler will deschedule the thread.

Two time limited scheduling algorithms are available: instruction number scheduling and time
slice scheduling. Under instruction number scheduling the amount of time each thread executes
for is limited by the number of instructions executed during execution of the thread. Thus under
instruction number scheduling, the decisions made by the scheduler are independent of duration
statements or the default cycles information. Under time slice scheduling, the amount of time each
thread executes for is limited by a fixed amount of simulated time. Thus under this scheduling
algorithm the amount of time each thread executes for is affected by duration statements, and also
by the default duration information.

97

6.2 Secondary Scheduling Algorithm

Two secondary scheduling algorithms are supported: round-robin or priority-based.

6.2.1 Round-Robin Scheduling

Under round-robin, the scheduler uses an arbitrary, fixed order in which to find the next thread to
execute. Consider the following example. Suppose we have threads t1, t2 and t3, and that the
order that the scheduler uses is [t1,t2,t3]. Suppose further that t1 is descheduled and at this
point t2 is blocked, and t3 is schedulable.

The scheduler would first test whether t2 is schedulable; since it is blocked, it would then
check whether t3 is schedulable. Thus t3 would be scheduled.

Suppose now that when t3 is descheduled, t1 and t2 are both schedulable. The scheduler
would first check t1, and since this is schedulable, it would be selected and executed.

Thus under round-robin scheduling a weak fairness property exists [?]: a thread that is never
blocked will eventually be scheduled.

6.2.2 Priority-based Scheduling

Priority-based scheduling is a variant on round-robin scheduling. A numeric priority is assigned
to each thread. When the scheduler needs to select the next thread to be scheduled, all the highest
priority threads are checked using a standard round-robin; if no schedulable thread is found, then
all threads of the second-highest priority are checked using a standard round-robin, and so on.

To illustrate this, consider the following example. Suppose we have threads a1, a2, a3, b1,
c1 and c2. Threads a1, a2 and a3 have priority 3; b1 has priority 2 and c1 and c2 have priority
1. Suppose that the round-robin orders used are:

Priority Order
3 [a1,a2,a3]
2 [b1]
1 [c1, c2]

Consider scheduling in the following situation:
Thread Status

a1 Blocked
a2 Schedulable
a3 Schedulable
b1 Schedulable
c1 Schedulable
c2 Schedulable

The scheduler examines the highest priority threads first. Thus first thread a1 would be
checked; it is blocked so a2 would be checked. Since a2 is schedulable it would be selected.

Now consider another situation:

– 99 –

Thread Status
a1 Blocked
a2 Blocked
a3 Blocked
b1 Blocked
c1 Blocked
c2 Schedulable

The scheduler examines threads of priority 3 first; they are all blocked. It then examines threads
of priority 2; they are also all blocked. Finally it examines threads of priority 1: first c1 is checked,
but it is blocked, then c2 is checked. Since c2 is schedulable it is selected.

Note that for threads which are not of the highest priority, there are no fairness properties: it is
possible for them to starve.

6.2.3 Priority of Default Thread
Consider the following model shown in Figure ??

Suppose that in the Overture or VDMTools interpreter the expression new B().Main() is
executed using round-robin scheduling. The model will then execute, and a result will be delivered
consisting of a sequence with at least 11 elements. The thread initiated by issuing a command in
the interpreter is called the default thread.

Consider now the situation in which the model is executed using priority-based scheduling,
where A has priority 2, and B has priority 1. In this case the computation will never terminate,
since B will never be scheduled due to having a lower priority than A, which is always schedulable.

To avoid this problem, Overture and VDMTools implements the following policy: the default
thread is always given a strictly higher priority than any other thread in the system, regardless
of what priority may actually have been specified for the class from which the default thread is
derived. In this way the default thread is always checked first by the scheduler.

�
class A

instance variables
data : seq of nat := []

operations
public IsFinished:() ==> ()
IsFinished() == skip;

public Get: () ==>
seq of nat

Get() == return data

sync
per IsFinished =>

len data > 10

thread
(dcl i : nat := 0;
while true do
(data := data ˆ [i];

i := i + 1))

end A

class B

operations
public Main:() ==> seq of nat
Main() ==
(dcl a : A := new A();

start(a);
a.IsFinished();
a.Get())

end B
� �
Figure 6.1: Example illustrating the Priority of the Default Thread

Chapter 7

Time Trace Analysis

In this chapter we describe the format of the time trace files, and the kinds of analysis that may be
performed on them.

7.1 Timed Trace Files

The time trace files generated during execution contain information about thread swapping, mes-
sages passed between CPUs and operation requests, activations and completions.

7.1.1 Example

An extract from a trace file is shown below as an example in Figure ??.
Each entry in the time trace file consists of an event name, and event information, separated by

->. Events fall into different categories, object history events, message events, declaration events,
deployment events and thread events. The category dictates the event information provided.

Object history events consist of operation requests, activations and completions. The informa-
tion provided for such events are: the operation called; information whether it is an asyn-
chronous operation; the object reference id and the CPU id on which the operation has been
called; the class which the object is an instance of; and the time at which the event occurred.

Message events are similar to operation requests except that they identify requests, activations
and completions of messages communicated over a BUS. These messages are automatically
derived by Overture when an operation is to be invoked on an instance that has been deployed
to a different CPU. Each message is given a unique identification. Thus, it is only the message
request events that contain all information about the BUS used, the CPU it is coming from
and to, etc. Importantly it also contains a size attribute that is derived from the values that
are passed over as parameters for the operation to be called at the other CPU.

101

CPUdecl -> id: 13 expl: false sys: "none" name: "vCPU 7"
DeployObj -> objref: 160 clnm: "FlareDispenser" cpunm: 0 time: 728
OpRequest -> id: 1 opname: "FlareController‘addDispenser" objref: 138

clnm: "FlareController" cpunm: 0 async: false time: 736
MessageRequest -> busid: 0 fromcpu: 0 tocpu: 9 msgid: 23

callthr: 1 opname: "FlareController‘addDispenser"
objref: 138 size: 80 time: 736

MessageActivate -> msgid: 23 time: 736
MessageCompleted -> msgid: 23 time: 736
ThreadSwapOut -> id: 15 objref: 152 clnm: "FlareDispenser"

cpunm: 9 overhead: 2 time: 736
ThreadCreate -> id: 16 period: false objref: 138

clnm: "FlareController" cpunm: 9 time: 738
ThreadSwapIn -> id: 16 objref: 138 clnm: "FlareController"

cpunm: 9 overhead: 2 time: 738

Figure 7.1: Example extract from a logfile

Declaration events are included in system “classes” where it is possible to declare CPU’s and
BUS’es. In addition CPU’s may be implicitly declared when new objects are created inside
the World class and this is also logged.

Deployment events are logged whenever objects are created. An object may initially be created
and deployed at the virtual CPU (always with cpuid 0) and then subsequently deployed at a
different CPU.

Thread events correspond to a thread being created, killed, swapped in or out, or (for periodic
threads) a thread which has missed its deadline being swapped in. In this case the thread id
is provided, together with the object reference id for the object owning the thread, the class
which the object is an instance of, the time of the event, and (for delayed periodic threads)
the delay.

7.2 Analysis Tools
Since the time trace file quickly becomes large, it is essential to use tools to analyze them. Here
we give some examples of such tools.

At the moment one external generic analysis tool for trace files produced by Overture exists.
This is the RealTime Log Viewer feature from Overture.

The RealTime Log Viewer feature is able to type check a trace file and if it is parsed and
checked to be correct it is able to show:

• A system architecture with the CPU’s and the connecting BUS’es as shown in Figure ??.

– 103 –

• An execution overview the illustrates when the different CPU’s and BUS’es are active (see
Figure ?? for an example).

• A detailed graphical overview for each CPU where the different objects that have been de-
ployed to that CPU and the different threads executing are shown (see Figure ?? for an
example).

Timed Assertions

The time trace file can be thought of as simply being a sequence. It is therefore possible to specify
VDM-SL predicates on such a sequence.

For this to be possible, an abstract VDM-SL representation of a trace file is needed. This is
now described.

A number of types are defined to represent the different fields in a time trace file. We represent
a string as a sequence of characters, and object references and thread ids as natural numbers.�
types

String = seq of char;
OBJ_Ref = nat;
ThreadId = nat;
� �
A trace is an ordered sequence of trace events.�

Trace = seq of TraceEvent
� �
There are many different kinds of trace events:�

TraceEvent =
ThreadSwapIn | ThreadSwapOut | DelayedThreadSwapIn |
OpRequest | OpActivate | OpCompleted | ThreadCreate |
ThreadKill | MessageRequest | MessageActivate |
MessageCompleted | ReplyRequest | CPUdecl | BUSdecl |
DeployObj;
� �

A thread swap in event consists of the id of the thread being swapped in, the object reference
owning the thread, the class name in which the thread is defined, the cpu where it is running, the
timing overhead of swapping in the thread and the time on that CPU.�

ThreadSwapIn :: id : ThreadId
objref : [OBJ_Ref]
clnm : String
cpunm : nat
overhead : nat
attime : nat;
� �

A delayed thread swap in has an extra field representing the delay.�
DelayedThreadSwapIn :: id : ThreadId

Figure 7.2: An extract from an execution overview for the counter measures example

– 105 –

Figure 7.3: An extract from one CPU execution for the counter measures example

objref : [OBJ_Ref]
clnm : String
delay : real
cpunm : nat
overhead : nat
attime : nat;
� �

A thread swap out contains the same information as a thread swap in.�
ThreadSwapOut :: id : ThreadId

objref : [OBJ_Ref]
clnm : String
cpunm : nat
overhead : nat
attime : nat;
� �

An operation request contains the thread in which the request was made, the name of the
operation, a reference to the object on which the request occurred, the name of the class which this
object is an instance of, the cpu where it is running, the arguments to the operation (if a special user

option is set for storing this detailed level of information), whether it is an asynchronous operation
and finally the time on that CPU.�
OpRequest :: id : ThreadId

opname : String
objref : OBJ_Ref
clnm : String
cpunm : nat
args : [seq of VAL]
isasync: bool
attime : nat;
� �

Operation activations and completions contain part of the information as operation requests
(the result of the operation is only present if the user have explicitly asked to get this information
logged).�
OpActivate :: id : ThreadId

opname : String
objref : OBJ_Ref
clnm : String
cpunm : nat
isasync: bool
attime : nat;

OpCompleted :: id : ThreadId
opname : String
objref : OBJ_Ref
clnm : String
cpunm : nat
res : [VAL]
isasync: bool
attime : nat;
� �

Trace events are also present whenever threads are being created and killed after completion.
Note that the creating of a thread also contains information whether it is a periodic thread.�
ThreadCreate :: id : ThreadId

period : bool
objref : [OBJ_Ref]
clnm : [String]
cpunm : nat
attime : nat;

ThreadKill :: id : ThreadId
cpunm : nat
attime: nat;
� �

A number of events appear whenever messages are sent between different CPU’s. It follow
the same request, activate and complete scheme as for the operations. However, for synchronous
operations there is a special reply request message event that is used to direct the result of executing

– 107 –

an operation on a different CPU to the right CPU and the right thread there as well. Otherwise the
fields used below should be rather self-explanatory.�
MessageRequest ::

busid : nat
fromcpu : nat
tocpu : nat
msgid : nat
callthr : ThreadId
opname : String
objref : [OBJ_Ref]
size : nat
attime : nat;

ReplyRequest ::
busid : nat
fromcpu : nat
tocpu : nat
msgid : nat
origmsgid : nat
callthr : ThreadId
calleethr : ThreadId
size : nat
attime : nat;

MessageActivate ::
msgid : nat
attime: nat;

MessageCompleted ::
msgid : nat
attime: nat;
� �
Declaration of CPU’s and BUS’es are also logged in the trace file in order to be able to draw

the overall system architecture.�
CPUdecl ::

id : nat
name : String
expl : bool;

BUSdecl ::
id : nat
topo : set of nat
name : String;

DeployObj ::
objref : OBJ_Ref
cpunm : nat
attime : nat
� �

This concludes the definition of types needed for representation of trace files.
To illustrate timed assertions, we show a couple of examples. A simple assertion could be that

any thread which is delayed, has delay within some desired maximum. This is expressed by the
function MaximumDelay.�
functions

MaximumDelay: real * Trace -> bool
MaximumDelay(maxDelay, trace) ==

forall ti in set elems trace &
is_DelayedThreadSwapIn(ti) => ti.delay <= maxDelay;
� �

A slightly more complicated assertion relates to the time taken for an operation to be execute.
We can specify that whenever a particular operation is activated, it completes execution within
some specified period using the function MaximumOpExecutionTime.�
MaximumOpExecutionTime: String * real * Trace -> bool
MaximumOpExecutionTime(opname, maxExecTime, trace) ==

forall i in set inds trace &
is_OpActivate(trace(i)) =>

trace(i).opname = opname =>
let opcompleteIndex = NextOpComplete(opname, i,

trace) in
trace(opcompleteIndex).attime - trace(i).attime <=
maxExecTime;
� �

MaximumOpExecutionTime uses the auxiliary function NextOpComplete. This finds
the index of the operation completion corresponding to the operation activation that occurred at
index i.�
NextOpComplete: String * nat * Trace -> nat
NextOpComplete(opname, i, trace) ==

hd [j | j in set inds trace
& j > i and
is_OpCompleted(trace(j)) and
trace(j).opname = opname]

pre exists j in set inds trace &
is_OpCompleted(trace(j)) and
j > i and trace(j).opname = opname
� �

This kind of timed assertion analysis is now incorporated in RealTime Log Viewer directly
inside Overture.

7.3 Calibration

Analysis of the time trace files involves interpretation of the time at which events occur. According
to the approach described in this document, these times are a simulation of the way in which time
would progress on the target processors using the target real-time kernel. The way in which the

– 109 –

target machine influences simulated time is by the use of the default times, which correspond to
the time taken to execute assembly instructions on the target processors.

However, this is an approximation, since the VDM interpreter has its own instruction set, which
will not coincide with that of any processor. Therefore there will inevitably be an element of
adjustment of the default times, to improve the precision of the simulation. This adjustment is
referred to as calibration.

Normally calibration occurs by comparing time traces obtained by execution of the actual ap-
plication on the target, with those obtained by executing the VDM model. Since the VDM model
is deterministic, it can be rerun with one scenario but different sets of default times, to allow con-
vergence to the actual application. Note that by the very nature of the approach, the simulation
will never precisely match the timing behaviour of the actual application; the property desired is
that the application exhibits no timing bottlenecks that were not identified by the VDM model.

Chapter 8

Postscript

In this document we have described how reactive real-time and distributed systems can be devel-
oped using Overture. We have focused on how key features of reactive real-time systems can be
modelled and analyzed using Overture. The main message is that this is a viable alternative to
the conventional development approaches. More time is spent in the early phases, but more confi-
dence is gained in the different designs’ ability to meet the necessary timing requirements earlier
than conventionally. The main question is whether the investment in the early phases is worthwhile.
We feel that it is justified, in particular in situations where access to the final hardware platform is
limited or not yet determined at all. However, we do not wish to claim that the approach we have
presented here is a magic recipe always ensuring correct systems. We simply wish to state that the
approach which has been described is more rigorous than the conventional development approach
and we feel that it is a pragmatic step in the right direction.

111

Appendix A

Glossary

Blocked The state of a thread which is unable to proceed because it is waiting for a permission
predicate to become true.

Bottleneck Part of the system whose timing behaviour critically affects the overall performance
of the system.

Concurrent Real-Time Distributed VDM-RT Design Model A model which defines a particu-
lar dynamic and physical architecture including its real-time behaviour and deployment to
CPU’s.

Concurrent VDM++ Design Model A model which defines a particular dynamic architecture,
without worrying in the first instance about real-time behaviour.

Default Cycles Information A mapping recording the execution times of assembly instructions
on the target processor.

Default Thread The thread which initiated execution of the model. Either started by the user in
the Overture or VDMTools interpreter, or started by a command in a script.

Dynamic Architecture Mapping of computations to processes (threads).

Hard Deadline A point in time by which the system must have performed some action; failure to
meet such a deadline is unacceptable.

Jitter The property that a periodic event is not perfectly periodic, but occurs within some interval
of its expected occurrence.

Schedulable For a thread, this means that the thread has been started, is not currently being ex-
ecuted but is not blocked. For a system, this means that it is possible for the system to be
executed without any thread missing its deadline.

Sequential VDM++ Design Model This must describe both the data that is to be computed, and
how it is to be structured into static classes, without making any commitment to a specific
dynamic architecture.

113

Soft Deadline A point in time by which the system must have performed some action; occasional
failure to meet such a deadline is acceptable, but persistent failure could lead to degraded
system performance.

Static Architecture Arrangement of system behaviour into objects.

Time Trace File File generated during execution of a real-time model by Overture or VDMTools,
containing information about the models run-time behaviour.

Trace Events The occurrence of a thread being swapped in or out, or an operation request, acti-
vation or completion.

Use Case This is a possible use of a system.

VDM-SL system specification This is a precise abstract design independent description of a sys-
tem.

Appendix B

Design Patterns

In this chapter a few design patterns are presented. These are abstract techniques which have been
found to be useful during development of a number of real-time applications.

B.1 The Fresh Data Pattern
The Fresh Data Pattern is a pattern for synchronizing data access. It is used in models where a
hardware device is being modelled but the data values generated by the device are specified by
another thread. The fresh data pattern then mediates communication between three threads:

The Inhabitor – a thread which inhabits the model with test data corresponding to the data which
would normally be generated by the hardware device.

The Proxy – a thread which is a model of the hardware device. It provides interfaces and actions
corresponding to those provided by the actual hardware device.

The Consumer – a thread which consumes data generated by the hardware device. The relation-
ship between the inhabitor and proxy is invisible to the consumer.

A diagram showing the relationship between the main classes in the pattern is shown in Fig-
ure ??.

The sequence diagram shown in Figure ?? illustrates an excerpt from the pattern. The pattern
is based on periodic execution of Inhabitor‘Inhabit. In the sequence diagram it is shown
that in the previous period there is a call to Proxy‘WaitFreshData. This call is blocked. The
next period begins with a call to Inhabitor‘Inhabit. This in turn calls its own operation
GetData to acquire some data, and then calls PutData to send this data to the Proxy. The call
to PutData releases the blocked call to WaitFreshData.

The Proxy can then inform the Consumer that data is available, which the Consumer can
access at its own leisure.

The Data class is used to represent the data values used in the pattern. Thus it is just a place
holder and therefore has no contents in this case.

115

Figure B.1: Class Diagram for Fresh Data Pattern

�
class Data
end Data
� �
B.1.1 The Inhabitor

The Inhabitor class is used to inhabit the model with data for testing purposes. It places this
data in a Proxy, which it has a reference to. This reference is stored as an instance variable.�
class Inhabitor

instance variables
proxyRef : Proxy
� �
The constructor is used to initialize the reference to the Proxy.�

operations
public Inhabitor : Proxy ==> Inhabitor
Inhabitor (proxy) ==

proxyRef := proxy;
� �
Data is sent to the proxy using the Inhabit operation.�

Inhabit : () ==> ()
Inhabit() ==

proxyRef.PutData(GetData());
� �
The operation GetData is used to actually acquire data values. Here it is left unspecified; in

a model it might read data from a file.�
GetData : () ==> Data
GetData() ==

is not yet specified
� �

– 117 –

Figure B.2: Sequence Diagram for Fresh Data Pattern

The Inhabitor thread calls the Inhabit operation with some fixed period, here arbitrarily
chosen to be 10000 with a jitter allowed to 100 time units and the minimum delay being 9900 time
units.�
thread

periodic (10000,100,9900,0)(Inhabit)

end Inhabitor
� �
B.1.2 The Proxy
The Proxy class provides the same interface as that intended for the actual device it is modelling,
but it takes the data that the device would generate from the Inhabitor.

It has three instance variables:

d the data value most recently generated, or nil if no fresh data exists.

freshData a Boolean value indicating whether fresh data exists.

consumerRef a reference to the Consumer.

�
class Proxy

instance variables
d : [Data] := nil;
freshData : bool := false;
consumerRef : Consumer
� �
The constructor is used to initialize the Consumer reference.�

operations

public Proxy : Consumer ==> Proxy
Proxy(consumer) ==

consumerRef := consumer;
� �
PutData is used by the Inhabitor to send data to the Proxy.�

public PutData : Data ==> ()
PutData(newData) ==

(d := newData;
freshData := true

);
� �
GetData is used by the Consumer to retrieve fresh data from the Proxy.�

public GetData : () ==> Data
GetData() ==

let od = d in
(d := nil;

return od
);
� �
WaitFreshData is used by this class’s thread to wait until fresh data is available.�

WaitFreshData : () ==> ()
WaitFreshData() ==

freshData := false;

sync
per WaitFreshData => freshData
� �
The thread for this class repeatedly waits for fresh data and then informs the consumer of its

arrival.�
thread

while true do
(WaitFreshData();

consumerRef.DataAvailable()
)

end Proxy
� �

– 119 –

B.1.3 The Consumer
The consumer represents the interface to the remainder of the system. It takes data values from the
Proxy and uses them as it sees fit.

Three instance variables are defined:

dataAvailable a Boolean value indicating whether fresh data is available or not.

proxyRef a reference to the Proxy, used to retrieve data.

d the data value retrieved from the Proxy.�
class Consumer

instance variables
dataAvailable : bool := false;
proxyRef : Proxy;
d : Data
� �
The constructor is used to initialize the reference to the Proxy.�

operations
public Consumer : Proxy ==> Consumer
Consumer(proxy) ==

proxyRef := proxy;
� �
DataAvailable is used by the Proxy to indicate arrival of fresh data.�
public DataAvailable : () ==> ()
DataAvailable() ==

dataAvailable := true;
� �
GetData is used to acquire fresh data from the proxy. It blocks whenever fresh data is not

available.�
GetData : () ==> ()
GetData() ==

(d := proxyRef.GetData();
dataAvailable := false
);

sync
per GetData => dataAvailable
� �
The thread for this class repeatedly takes data when it is available.�

thread

while true do
GetData()

end Consumer
� �

B.2 The Time Stamp Pattern
The Time Stamp pattern is for use in synchronous systems, where each different thread has its own
execution period. Such threads we refer to as clients. A single instance of a TimeStamp class
will be shared amongst all of the different clients, and is used to ensure each client is awoken for
its execution period (following the standard singleton design pattern). An example arrangement is
shown in Figure ?? with two client classes included for illustrative purposes.

Each client executes its ComputationPhase – that computation it is intended to perform pe-
riodically. When it completes its ComputationPhase it calls TimeStamp‘WaitRelative
with its execution period, and is then awoken at that time, or as soon as possible thereafter. Note
that since the clients are incidental to the pattern, they are not given in the following specification.

B.2.1 The TimeStamp Class
The TimeStamp class maintains a map from thread ids to time (wakeUpMap), representing when
a particular thread should be woken. The other instance variable in the class represents the current
time. Note that this concept is orthogonal to the notion of simulated time described earlier in this
document.�
class TimeStamp

values

public stepLength : nat = 1;

instance variables

currentTime : nat := 0;
wakeUpMap : map nat to [nat] := {|->};
barrierCount : nat := 0;
registeredThreads : set of BaseThread := {};
isInitialising : bool := true;
-- singleton instance of class
private static timeStamp : TimeStamp := new TimeStamp();
� �

Other classes can access the TimeStamp singleton class using the GetInstance operation.�
operations

-- private constructor (singleton pattern)
private TimeStamp : () ==> TimeStamp
TimeStamp() ==

skip;

-- public operation to get the singleton instance
public static GetInstance: () ==> TimeStamp
GetInstance() ==

return timeStamp;
� �

– 121 –

Whenever a thread is started it gets registered with a reference to it:�
public RegisterThread : BaseThread ==> ()
RegisterThread(t) ==
(barrierCount := barrierCount + 1;
registeredThreads := registeredThreads union {t};
);

public UnRegisterThread : BaseThread ==> ()
UnRegisterThread(t) ==
(barrierCount := barrierCount - 1;
registeredThreads := registeredThreads \ {t};
);
� �

When all threads have registered themselves and initialisation is finished all these threads can
be started.�
public IsInitialising: () ==> bool
IsInitialising() ==

return isInitialising;

public DoneInitialising: () ==> ()
DoneInitialising() ==
(if isInitialising
then (isInitialising := false;

for all t in set registeredThreads
do

start(t);
);

);
� �
A client may request an absolute wait. using WaitRelative.�

public WaitRelative : nat ==> ()
WaitRelative(val) ==

WaitAbsolute(currentTime + val);
� �
Absolute waits are performed using WaitAbsolute. Note that if time given is less than the

current time, then the client will never be woken.�
public WaitAbsolute : nat ==> ()
WaitAbsolute(val) ==
(AddToWakeUpMap(threadid, val);
-- Last to enter the barrier notifies the rest.
BarrierReached();
-- Wait till time is up
Awake();

);
� �
AddToWakeUpMap is used to add new waits to the wakeUpMap.�

AddToWakeUpMap : nat * nat ==> ()

AddToWakeUpMap(tId, val) ==
wakeUpMap := wakeUpMap ++ { tId |-> val };
� �
The operation BarrierReached evaluates the wakeUpMap when all period threads have

entered the mapping. Time is incremented and all threads that needs to be awoken is removed from
the wakeUpMap.�
BarrierReached : () ==> ()
BarrierReached() ==

while (card dom wakeUpMap = barrierCount) do
(currentTime := currentTime + stepLength;
let threadSet : set of nat = {th | th in set dom wakeUpMap

& wakeUpMap(th) <> nil and
wakeUpMap(th) <= currentTime }

in
for all t in set threadSet
do

wakeUpMap := {t} <-: wakeUpMap;
)

post forall x in set rng wakeUpMap & x = nil or x >= currentTime;
� �
All threads block on the operation Awake until they are removed from the wakeUpMap as

described above.�
operations

Awake: () ==> ()
Awake() == skip;

sync
per Awake => threadid not in set dom wakeUpMap;
� �
The current time of the class may be obtained via the GetTime operation.�

public GetTime : () ==> nat
GetTime() ==

return currentTime;
� �
Since barrierCount, registeredThreads and wakeUpMap is manipulated by a num-

ber of different operations, we need to set access to them to be mutually exclusive.�
sync

per Awake => threadid not in set dom wakeUpMap;
mutex (IsInitialising);
mutex (DoneInitialising);
mutex (AddToWakeUpMap);
mutex (NotifyThread);
mutex (BarrierReached);
mutex (AddToWakeUpMap, NotifyThread);
mutex (AddToWakeUpMap, BarrierReached);
mutex (NotifyThread, BarrierReached);

– 123 –

mutex (AddToWakeUpMap, NotifyThread, BarrierReached);

end TimeStamp
� �

Appendix C

Examples In Full

C.1 VDM-SL Model for Counter Measures System
�
types

MissileInputs = seq of MissileInput;

MissileInput = MissileType * Angle;

MissileType = <MissileA> | <MissileB> | <MissileC> | <None>;

Angle = nat
inv num == num <= 360;

Output = map MagId to seq of OutputStep;

MagId = token;

OutputStep = FlareType * AbsTime;

Response = FlareType * nat;

AbsTime = nat;

FlareType = <FlareOneA> | <FlareTwoA> | <FlareOneB> |
<FlareTwoB> | <FlareOneC> | <FlareTwoC> |
<DoNothingA> | <DoNothingB> | <DoNothingC>;

Plan = seq of (FlareType * Delay);

Delay = nat;

values

responseDB : map MissileType to Plan =

125

{<MissileA> |-> [mk_(<FlareOneA>,900), mk_(<FlareTwoA>,500),
mk_(<DoNothingA>,100), mk_(<FlareOneA>,500)],

<MissileB> |-> [mk_(<FlareTwoB>,500), mk_(<FlareTwoB>,700)],
<MissileC> |-> [mk_(<FlareOneC>,400), mk_(<DoNothingC>,100),

mk_(<FlareTwoC>,400), mk_(<FlareOneC>,500)]
};

missilePriority : map MissileType to nat
= {<MissileA> |-> 1,

<MissileB> |-> 2,
<MissileC> |-> 3,
<None> |-> 0};

stepLength : nat = 100;

testval1 : MissileInputs = [mk_(<MissileA>,88),
mk_(<MissileB>,70),
mk_(<MissileA>,222),
mk_(<MissileC>,44)];

testval2 : MissileInputs = [mk_(<MissileC>,188),
mk_(<MissileB>,70),
mk_(<MissileA>,2),
mk_(<MissileC>,44)];

testval3 : MissileInputs = [mk_(<MissileA>,288),
mk_(<MissileB>,170),
mk_(<MissileA>,222),
mk_(<MissileC>,44)];

functions

CounterMeasures: MissileInputs -> Output
CounterMeasures(missileInputs) ==

CM(missileInputs,{|->},{|->},0);

CM: MissileInputs * Output * map MagId to [MissileType] *
nat -> Output

CM(missileInputs, outputSoFar, lastMissile, curTime) ==
if missileInputs = []
then outputSoFar
else let mk_(curMis,angle) = hd missileInputs,

magid = Angle2MagId(angle)
in

if magid not in set dom lastMissile or
(magid in set dom lastMissile and
missilePriority(curMis) >
missilePriority(lastMissile(magid)))

then let newOutput =
InterruptPlan(curTime,outputSoFar,

responseDB(curMis),

– 127 –

magid)
in CM(tl missileInputs, newOutput,

lastMissile ++ {magid |-> curMis},
curTime + stepLength)

else CM(tl missileInputs, outputSoFar,
lastMissile,curTime + stepLength)

measure CMLen;

CMLen: MissileInputs * Output * map MagId to [MissileType] * nat -> nat
CMLen(list,-,-,-) == len list;

InterruptPlan: nat * Output * Plan * MagId -> Output
InterruptPlan(curTime,expOutput,plan,magid) ==

{magid |-> (if magid in set dom expOutput
then LeavePrefixUnchanged(expOutput(magid),

curTime)
else []) ˆ
MakeOutputFromPlan(curTime, plan)}

munion
({magid} <-: expOutput);

LeavePrefixUnchanged: seq of OutputStep * nat ->
seq of OutputStep

LeavePrefixUnchanged(output_l, curTime) ==
[output_l(i) | i in set inds output_l

& let mk_(-,t) = output_l(i) in t <= curTime];

MakeOutputFromPlan : nat * seq of Response -> seq of OutputStep
MakeOutputFromPlan(curTime, response) ==

let output = OutputAtTimeZero(response) in
[let mk_(flare,t) = output(i)
in

mk_(flare,t+curTime)
| i in set inds output];

OutputAtTimeZero : seq of Response -> seq of OutputStep
OutputAtTimeZero(response) ==

let absTimes = RelativeToAbsoluteTimes(response) in
let mk_(firstFlare,-) = hd absTimes in
[mk_(firstFlare,0)] ˆ
[let mk_(-,t) = absTimes(i-1),

mk_(f,-) = absTimes(i) in
mk_(f,t) | i in set {2,...,len absTimes}];

RelativeToAbsoluteTimes : seq of Response ->
seq of (FlareType * nat)

RelativeToAbsoluteTimes(ts) ==
if ts = []
then []
else let mk_(f,t) = hd ts,

ns = RelativeToAbsoluteTimes(tl ts) in

[mk_(f,t)] ˆ [let mk_(nf, nt) = ns(i)
in mk_(nf, nt + t)

| i in set inds ns]
measure RespLen;

RespLen: seq of Response -> nat
RespLen(l) ==

len l;

Angle2MagId: Angle -> MagId
Angle2MagId(angle) ==

if angle < 90
then mk_token("Magazine 1")
elseif angle < 180
then mk_token("Magazine 2")
elseif angle < 270
then mk_token("Magazine 3")
else mk_token("Magazine 4");
� �

C.2 Sequential VDM++ Model for Counter Measures System

C.2.1 The CM Class�
class CM

instance variables

-- maintain a link to the detector
public static detector : MissileDetector := new MissileDetector();

public static sensor0 : Sensor := new Sensor(detector,0);
public static sensor1 : Sensor := new Sensor(detector,90);
public static sensor2 : Sensor := new Sensor(detector,180);
public static sensor3 : Sensor := new Sensor(detector,270);

public static controller0 : FlareController := new FlareController(0);
public static controller1 : FlareController := new FlareController(120);
public static controller2 : FlareController := new FlareController(240);

public static dispenser0 : FlareDispenser := new FlareDispenser(0);
public static dispenser1 : FlareDispenser := new FlareDispenser(30);
public static dispenser2 : FlareDispenser := new FlareDispenser(60);
public static dispenser3 : FlareDispenser := new FlareDispenser(90);

public static dispenser4 : FlareDispenser := new FlareDispenser(0);
public static dispenser5 : FlareDispenser := new FlareDispenser(30);
public static dispenser6 : FlareDispenser := new FlareDispenser(60);
public static dispenser7 : FlareDispenser := new FlareDispenser(90);

– 129 –

public static dispenser8 : FlareDispenser := new FlareDispenser(0);
public static dispenser9 : FlareDispenser := new FlareDispenser(30);
public static dispenser10 : FlareDispenser := new FlareDispenser(60);
public static dispenser11 : FlareDispenser := new FlareDispenser(90);

end CM
� �
C.2.2 The World Class�
class World

instance variables

-- maintain a link to the environment
public static env : [Environment] := nil;
public static timerRef : Timer := Timer‘GetInstance();

operations

public World: () ==> World
World () ==

(-- set-up the sensors
env := new Environment("scenario.txt");
env.addSensor(CM‘sensor0);
env.addSensor(CM‘sensor1);
env.addSensor(CM‘sensor2);
env.addSensor(CM‘sensor3);

-- add the first controller with four dispensers
CM‘controller0.addDispenser(CM‘dispenser0);
CM‘controller0.addDispenser(CM‘dispenser1);
CM‘controller0.addDispenser(CM‘dispenser2);
CM‘controller0.addDispenser(CM‘dispenser3);
CM‘detector.addController(CM‘controller0);

-- add the second controller with four dispensers
CM‘controller1.addDispenser(CM‘dispenser4);
CM‘controller1.addDispenser(CM‘dispenser5);
CM‘controller1.addDispenser(CM‘dispenser6);
CM‘controller1.addDispenser(CM‘dispenser7);
CM‘detector.addController(CM‘controller1);

-- add the third controller with four dispensers
CM‘controller2.addDispenser(CM‘dispenser8);
CM‘controller2.addDispenser(CM‘dispenser9);
CM‘controller2.addDispenser(CM‘dispenser10);
CM‘controller2.addDispenser(CM‘dispenser11);
CM‘detector.addController(CM‘controller2);

);

-- the run function blocks the user-interface thread
-- until all missiles in the file have been processed
public Run: () ==> ()
Run () ==

env.Run()

end World
� �
C.2.3 The Global Class�
class GLOBAL

values

public SENSOR_APERTURE = 90;
public FLARE_APERTURE = 120;
public DISPENSER_APERTURE = 30

types

-- there are three different types of missiles
public
MissileType = <MissileA> | <MissileB> | <MissileC> | <None>;

-- there are nine different flare types, three per missile
public FlareType =

<FlareOneA> | <FlareTwoA> | <DoNothingA> |
<FlareOneB> | <FlareTwoB> | <DoNothingB> |
<FlareOneC> | <FlareTwoC> | <DoNothingC>;

-- the angle at which the missile is incoming
public Angle = nat
inv num == num <= 360;

public EventId = nat;

public Time = nat

operations

public canObserve: Angle * Angle * Angle ==> bool
canObserve (pangle, pleft, psize) ==

def pright = (pleft + psize) mod 360 in
if pright < pleft
-- check between [0,pright> and [pleft,360>
then return (pangle < pright or pangle >= pleft)
-- check between [pleft, pright>

– 131 –

else return (pangle >= pleft and pangle < pright);

public getAperture: () ==> Angle * Angle
getAperture () == is subclass responsibility;

end GLOBAL
� �
C.2.4 The Environment Class�
class Environment is subclass of GLOBAL

types

public inline = EventId * MissileType * Angle * Time;
public outline = EventId * FlareType * Angle * Time * Time;

instance variables

-- access to the VDMTools stdio
io : IO := new IO();

-- the input file to process
inlines : seq of inline := [];

-- the output file to print
outlines : seq of outline := [];

-- maintain a link to all sensors
ranges : map nat to (Angle * Angle) := {|->};
sensors : map nat to Sensor := {|->};
inv dom ranges = dom sensors;

-- information about the latest event that has arrived
evid : [EventId] := nil;

busy : bool := true;

operations

public Environment: seq of char ==> Environment
Environment (fname) ==

def mk_ (-,input) = io.freadval[seq of inline](fname) in
inlines := input;

public addSensor: Sensor ==> ()
addSensor (psens) ==

(dcl id : nat := card dom ranges + 1;
atomic (
ranges := ranges munion {id |-> psens.getAperture()};

sensors := sensors munion {id |-> psens}
)

);

public Run: () ==> ()
Run () ==
(while not (isFinished() and CM‘detector.isFinished()) do

(evid := createSignal();
CM‘detector.Step();
World‘timerRef.StepTime();
);

showResult()
);

private createSignal: () ==> [EventId]
createSignal () ==

(if len inlines > 0
then (dcl curtime : Time := World‘timerRef.GetTime(),

done : bool := false;
while not done do
def mk_ (eventid, pmt, pa, pt) = hd inlines in

if pt <= curtime
then (for all id in set dom ranges do

def mk_(papplhs,pappsize) = ranges(id) in
if canObserve(pa,papplhs,pappsize)
then sensors(id).trip(eventid,pmt,pa);

inlines := tl inlines;
done := len inlines = 0;
return eventid)

else (done := true;
return nil))

else (busy := false;
return nil));

public handleEvent: EventId * FlareType * Angle * Time * Time ==> ()
handleEvent (newevid,pfltp,angle,pt1,pt2) ==

(outlines := outlines ˆ [mk_ (newevid,pfltp, angle,pt1, pt2)]);

public showResult: () ==> ()
showResult () ==

def - = io.writeval[seq of outline](outlines) in skip;

public isFinished : () ==> bool
isFinished () ==

return inlines = [] and not busy;

end Environment
� �

– 133 –

C.2.5 The Sensor Class�
class Sensor is subclass of GLOBAL

instance variables

-- the missile detector this sensor is connected to
private detector : MissileDetector;

-- the left hand-side of the viewing angle of the sensor
private aperture : Angle;

operations

public Sensor: MissileDetector * Angle ==> Sensor
Sensor (pmd, psa) == (detector := pmd; aperture := psa);

-- get the left hand-side start point and opening angle
public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_ (aperture, SENSOR_APERTURE);

-- trip is called asynchronously from the environment to
-- signal an event. the sensor triggers if the event is
-- in the field of view. the event is stored in the
-- missile detector for further processing
public trip: EventId * MissileType * Angle ==> ()
trip (evid, pmt, pa) ==

-- log and time stamp the observed threat
detector.addThreat(evid, pmt,pa,World‘timerRef.GetTime())

pre canObserve(pa, aperture, SENSOR_APERTURE)

end Sensor
� �
C.2.6 The Missile Detector Class�
class MissileDetector is subclass of GLOBAL

-- the primary task of the MissileDetector is to
-- collect all sensor data and dispatch each event
-- to the appropriate FlareController

instance variables

-- maintain a link to each controller
ranges : map nat to (Angle * Angle) := {|->};
controllers : map nat to FlareController := {|->};
inv dom ranges = dom controllers;

-- collects the observations from all attached sensors
threats : seq of (EventId * MissileType * Angle * Time) := [];

-- status of the missile detector
busy : bool := false

operations

-- addController is only used to instantiate the model
public addController: FlareController ==> ()
addController (pctrl) ==

(dcl nid : nat := card dom ranges + 1;
atomic
(ranges := ranges munion {nid |-> pctrl.getAperture()};
controllers := controllers munion {nid |-> pctrl}
);

);

public Step: () ==> ()
Step() ==

(if threats <> []
then def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then controllers(id).addThreat(evid,pmt,pa,pt);

busy := len threats > 0;
for all id in set dom controllers do
controllers(id).Step()

);

-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead.
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);

-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res);

public isFinished: () ==> bool
isFinished () ==

return forall id in set dom controllers &
controllers(id).isFinished()

– 135 –

end MissileDetector
� �
C.2.7 The Flare Controller Class�
class FlareController is subclass of GLOBAL

instance variables

-- the left hand-side of the working angle
private aperture : Angle;

-- maintain a link to each dispenser
ranges : map nat to (Angle * Angle) := {|->};
dispensers : map nat to FlareDispenser := {|->};
inv dom ranges = dom dispensers;

-- the relevant events to be treated by this controller
threats : seq of (EventId * MissileType * Angle * Time) := [];

-- the status of the controller
busy : bool := false

operations

public FlareController: Angle ==> FlareController
FlareController (papp) == aperture := papp;

public addDispenser: FlareDispenser ==> ()
addDispenser (pfldisp) ==

let angle = aperture + pfldisp.GetAngle() in
(dcl id : nat := card dom ranges + 1;
atomic
(ranges := ranges munion

{id |-> mk_(angle, DISPENSER_APERTURE)};
dispensers := dispensers munion {id |-> pfldisp});

);

public Step: () ==> ()
Step() ==

(if threats <> []
then def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then dispensers(id).addThreat(evid,pmt,pt);

busy := len threats > 0;
for all id in set dom dispensers do

dispensers(id).Step());

-- get the left hand-side start point and opening angle
public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_(aperture, FLARE_APERTURE);

-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);

-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res);

public isFinished: () ==> bool
isFinished () ==

return forall id in set dom dispensers &
dispensers(id).isFinished();

end FlareController
� �
C.2.8 The Flare Dispenser Class�
class FlareDispenser is subclass of GLOBAL

values

responseDB : map MissileType to Plan =
{<MissileA> |-> [mk_(<FlareOneA>,900),

mk_(<FlareTwoA>,500),
mk_(<DoNothingA>,100),
mk_(<FlareOneA>,500)],

<MissileB> |-> [mk_(<FlareTwoB>,500),
mk_(<FlareTwoB>,700)],

<MissileC> |-> [mk_(<FlareOneC>,400),
mk_(<DoNothingC>,100),
mk_(<FlareTwoC>,400),
mk_(<FlareOneC>,500)] };

missilePriority : map MissileType to nat =
{<None> |-> 0,
<MissileA> |-> 1,
<MissileB> |-> 2,
<MissileC> |-> 3 }

– 137 –

types

public Plan = seq of PlanStep;

public PlanStep = FlareType * Time;

instance variables

public curplan : Plan := [];
curprio : nat := 0;
busy : bool := false;
aperture : Angle;
eventid : [EventId];

operations

public FlareDispenser: nat ==> FlareDispenser
FlareDispenser(ang) ==

aperture := ang;

public Step: () ==> ()
Step() ==

if len curplan > 0
then (dcl curtime : Time := World‘timerRef.GetTime(),

first : PlanStep := hd curplan,
next : Plan := tl curplan;

let mk_(fltp, fltime) = first in
(if fltime <= curtime
then (releaseFlare(eventid,fltp,fltime,curtime);

curplan := next;
if len next = 0
then (curprio := 0;

busy := false))
)

);

public GetAngle: () ==> nat
GetAngle() ==

return aperture;

public addThreat: EventId * MissileType * Time ==> ()
addThreat (evid, pmt, ptime) ==

if missilePriority(pmt) > curprio
then (dcl newplan : Plan := [],

newtime : Time := ptime;
-- construct an absolute time plan
for mk_(fltp, fltime) in responseDB(pmt) do

(newplan := newplan ˆ [mk_ (fltp, newtime)];
newtime := newtime + fltime);

-- immediately release the first action

def mk_(fltp, fltime) = hd newplan;
t = World‘timerRef.GetTime() in

releaseFlare(evid,fltp,fltime,t);
-- store the rest of the plan
curplan := tl newplan;
eventid := evid;
curprio := missilePriority(pmt);
busy := true)

pre pmt in set dom missilePriority and
pmt in set dom responseDB;

private releaseFlare: EventId * FlareType * Time * Time ==> ()
releaseFlare (evid,pfltp, pt1, pt2) ==

World‘env.handleEvent(evid,pfltp,aperture,pt1,pt2);

public isFinished: () ==> bool
isFinished () ==

return not busy

end FlareDispenser
� �
C.2.9 The Timer Class�
class Timer

instance variables

currentTime : nat := 0;
private static timerInstance : Timer := new Timer();

values

stepLength : nat = 10;

operations

private Timer: () ==> Timer
Timer() ==

skip;

public static GetInstance: () ==> Timer
GetInstance() ==

return timerInstance;

public StepTime : () ==> ()
StepTime() ==

currentTime := currentTime + stepLength;

public GetTime : () ==> nat

– 139 –

GetTime() ==
return currentTime;

end Timer
� �
C.2.10 The IO Class�
class IO

-- Overture STANDARD LIBRARY: INPUT/OUTPUT
-- --
--
-- Standard library for the Overture Interpreter. When the interpreter
-- evaluates the preliminary functions/operations in this file,
-- corresponding internal functions is called instead of issuing a run
-- time error. Signatures should not be changed, as well as name of
-- module (VDM-SL) or class (VDM++). Pre/post conditions is
-- fully user customisable.
-- Dont care’s may NOT be used in the parameter lists.
--
-- The in/out functions will return false if an error occurs. In this
-- case an internal error string will be set (see ’ferror’).

types

public
filedirective = <start>|<append>

functions

-- Write VDM value in ASCII format to std out:
public
writeval[@p]: @p -> bool
writeval(val)==

is not yet specified;

-- Write VDM value in ASCII format to file.
-- fdir = <start> will overwrite existing file,
-- fdir = <append> will append output to the file (created if
-- not existing).
public
fwriteval[@p]:seq1 of char * @p * filedirective -> bool
fwriteval(filename,val,fdir) ==

is not yet specified;

-- Read VDM value in ASCII format from file
public
freadval[@p]:seq1 of char -> bool * [@p]
freadval(f) ==

is not yet specified
post let mk_(b,t) = RESULT in not b => t = nil;

operations

-- Write text to std out. Surrounding double quotes will be stripped,
-- backslashed characters should be interpreted.
public
echo: seq of char ==> bool
echo(text) ==

fecho ("",text,nil);

-- Write text to file like ’echo’
public
fecho: seq of char * seq of char * [filedirective] ==> bool
fecho (filename,text,fdir) ==

is not yet specified
pre filename = "" <=> fdir = nil;

-- The in/out functions will return false if an error occur. In this
-- case an internal error string will be set. ’ferror’ returns this
-- string and set it to "".
public
ferror:() ==> seq of char
ferror () ==

is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static print: ? ==> ()
print(arg) ==

is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static printf: seq of char * seq of ? ==> ()
printf(format, args) ==

is not yet specified;

end IO
� �
C.3 Concurrent VDM++ Model for Counter Measures System

C.3.1 The CM Class�
class CM

instance variables

– 141 –

-- maintain a link to the detector
public static detector : MissileDetector := new MissileDetector(nil);

public static sensor0 : Sensor := new Sensor(detector,0);
public static sensor1 : Sensor := new Sensor(detector,90);
public static sensor2 : Sensor := new Sensor(detector,180);
public static sensor3 : Sensor := new Sensor(detector,270);

public static controller0 : FlareController := new FlareController(0, nil);
public static controller1 : FlareController := new FlareController(120, nil);
public static controller2 : FlareController := new FlareController(240, nil);

public static dispenser0 : FlareDispenser := new FlareDispenser(0, nil);
public static dispenser1 : FlareDispenser := new FlareDispenser(30, nil);
public static dispenser2 : FlareDispenser := new FlareDispenser(60, nil);
public static dispenser3 : FlareDispenser := new FlareDispenser(90, nil);

public static dispenser4 : FlareDispenser := new FlareDispenser(0, nil);
public static dispenser5 : FlareDispenser := new FlareDispenser(30, nil);
public static dispenser6 : FlareDispenser := new FlareDispenser(60, nil);
public static dispenser7 : FlareDispenser := new FlareDispenser(90, nil);

public static dispenser8 : FlareDispenser := new FlareDispenser(0, nil);
public static dispenser9 : FlareDispenser := new FlareDispenser(30, nil);
public static dispenser10 : FlareDispenser := new FlareDispenser(60, nil);
public static dispenser11 : FlareDispenser := new FlareDispenser(90, nil);

end CM
� �
C.3.2 The World Class�
class World

instance variables

public static timerRef : TimeStamp := TimeStamp‘GetInstance();
public static env : [Environment] := nil;

operations

public World: () ==> World
World () ==

(-- set-up the sensors
env := new Environment("scenario.txt", nil);

env.addSensor(CM‘sensor0);
env.addSensor(CM‘sensor1);
env.addSensor(CM‘sensor2);
env.addSensor(CM‘sensor3);

-- add the first controller with four dispensers
CM‘controller0.addDispenser(CM‘dispenser0);
CM‘controller0.addDispenser(CM‘dispenser1);
CM‘controller0.addDispenser(CM‘dispenser2);
CM‘controller0.addDispenser(CM‘dispenser3);
CM‘detector.addController(CM‘controller0);

-- add the second controller with four dispensers
CM‘controller1.addDispenser(CM‘dispenser4);
CM‘controller1.addDispenser(CM‘dispenser5);
CM‘controller1.addDispenser(CM‘dispenser6);
CM‘controller1.addDispenser(CM‘dispenser7);
CM‘detector.addController(CM‘controller1);

-- add the third controller with four dispensers
CM‘controller2.addDispenser(CM‘dispenser8);
CM‘controller2.addDispenser(CM‘dispenser9);
CM‘controller2.addDispenser(CM‘dispenser10);
CM‘controller2.addDispenser(CM‘dispenser11);
CM‘detector.addController(CM‘controller2);
);

-- the run function blocks the user-interface thread
-- until all missiles in the file have been processed
public Run: () ==> ()
Run () ==

(-- start the environment
timerRef.DoneInitialising();
-- wait for the environment to handle all input
env.isFinished();
-- wait for the missile detector to finish
CM‘detector.isFinished();
-- print the result
env.showResult())

end World
� �
C.3.3 The Global Class�
class GLOBAL

values

public SENSOR_APERTURE = 90;
public FLARE_APERTURE = 120;
public DISPENSER_APERTURE = 30

types

– 143 –

-- there are three different types of missiles
public MissileType = <MissileA> | <MissileB> | <MissileC> | <None>;

-- there are nine different flare types, three per missile
public FlareType =

<FlareOneA> | <FlareTwoA> | <DoNothingA> |
<FlareOneB> | <FlareTwoB> | <DoNothingB> |
<FlareOneC> | <FlareTwoC> | <DoNothingC>;

-- the angle at which the missile is incoming
public Angle = nat
inv num == num < 360;

public EventId = nat;

public Time = nat;

operations

public canObserve: Angle * Angle * Angle ==> bool
canObserve (pangle, pleft, psize) ==

def pright = (pleft + psize) mod 360 in
if pright < pleft
-- check between [0,pright> and [pleft,360>
then return (pangle < pright or pangle >= pleft)
-- check between [pleft, pright>
else return (pangle >= pleft and pangle < pright);

end GLOBAL
� �
C.3.4 The Environment Class�
class Environment is subclass of GLOBAL, BaseThread

types

public InputTP = (Time * seq of inline);

public inline = EventId * MissileType * Angle * Time;
public outline = EventId * FlareType * Angle * Time * Time

instance variables

-- access to the VDMTools stdio
io : IO := new IO();

-- the input file to process
inlines : seq of inline := [];

-- the output file to print
outlines : seq of outline := [];

-- maintain a link to all sensors
ranges : map nat to (Angle * Angle) := {|->};
sensors : map nat to Sensor := {|->};
inv dom ranges = dom sensors;

busy : bool := true;

-- Amount of time we want to simulate
simtime : Time;

operations

public Environment: seq of char * [ThreadDef] ==> Environment
Environment (fname, tDef) ==
(def mk_ (-,mk_(timeval,input)) = io.freadval[InputTP](fname) in

(inlines := input;
simtime := timeval);

if tDef <> nil
then (period := tDef.p;

isPeriodic := tDef.isP;
);

BaseThread(self);
);

public addSensor: Sensor ==> ()
addSensor (psens) ==

(dcl id : nat := card dom ranges + 1;
atomic (
ranges := ranges munion {id |-> psens.getAperture()};
sensors := sensors munion {id |-> psens}

)
);

private createSignal: () ==> ()
createSignal () ==

(if len inlines > 0
then (dcl curtime : Time := World‘timerRef.GetTime(),

done : bool := false;
while not done do
def mk_ (eventid, pmt, pa, pt) = hd inlines in

if pt <= curtime
then (for all id in set dom ranges do

def mk_(papplhs,pappsize) = ranges(id) in
if canObserve(pa,papplhs,pappsize)
then sensors(id).trip(eventid,pmt,pa);

inlines := tl inlines;

– 145 –

done := len inlines = 0;
return)

else (done := true;
return))

else (busy := false;
return));

public handleEvent: EventId * FlareType * Angle * Time * Time ==> ()
handleEvent (evid,pfltp,angle,pt1,pt2) ==

(outlines := outlines ˆ [mk_ (evid,pfltp,angle,pt1,pt2)]);

public showResult: () ==> ()
showResult () ==

def - = io.writeval[seq of outline](outlines) in skip;

public isFinished : () ==> ()
isFinished () == skip;

public Step : () ==> ()
Step() ==
(if World‘timerRef.GetTime() < simtime
then createSignal()
else busy := false;
);

sync

mutex (handleEvent);
mutex (createSignal);
per isFinished => not busy;

end Environment
� �
C.3.5 The Sensor Class�
class Sensor is subclass of GLOBAL

instance variables

-- the missile detector this sensor is connected to
private detector : MissileDetector;

-- the left hand-side of the viewing angle of the sensor
private aperture : Angle;

operations

public Sensor: MissileDetector * Angle ==> Sensor
Sensor (pmd, psa) == (detector := pmd; aperture := psa);

-- get the left hand-side start point and opening angle
public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_ (aperture, SENSOR_APERTURE);

-- trip is called asynchronously from the environment to
-- signal an event. the sensor triggers if the event is
-- in the field of view. the event is stored in the
-- missile detector for further processing
public trip: EventId * MissileType * Angle ==> ()
trip (evid, pmt, pa) ==

-- log and time stamp the observed threat
detector.addThreat(evid, pmt,pa,World‘timerRef.GetTime())

pre canObserve(pa, aperture, SENSOR_APERTURE)

end Sensor
� �
C.3.6 The Missile Detector Class�
class MissileDetector is subclass of GLOBAL, BaseThread

-- the primary task of the MissileDetector is to
-- collect all sensor data and dispatch each event
-- to the appropriate FlareController

instance variables

-- maintain a link to each controller
ranges : map nat to (Angle * Angle) := {|->};
controllers : map nat to FlareController := {|->};
inv dom ranges = dom controllers;

-- collects the observations from all attached sensors
threats : seq of (EventId * MissileType * Angle * Time) := [];

-- status of the missile detector
busy : bool := false

operations

public MissileDetector: [ThreadDef] ==> MissileDetector
MissileDetector(tDef)==
(if tDef <> nil
then (period := tDef.p;

isPeriodic := tDef.isP;
);

BaseThread(self);
);

– 147 –

-- addController is only used to instantiate the model
public addController: FlareController ==> ()
addController (pctrl) ==

(dcl nid : nat := card dom ranges + 1;
atomic
(ranges := ranges munion {nid |-> pctrl.getAperture()};
controllers := controllers munion {nid |-> pctrl}
);

);

-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead.
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);

-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res);

public isFinished: () ==> ()
isFinished () ==

for all id in set dom controllers do
controllers(id).isFinished();

Step: () ==> ()
Step() ==
(if threats <> []

then (def mk_ (evid,pmt, pa, pt) = getThreat() in
for all id in set dom ranges do

def mk_(papplhs, pappsize) = ranges(id) in
if canObserve(pa, papplhs, pappsize)
then controllers(id).addThreat(evid,pmt,pa,pt);

busy := len threats > 0);
);

sync
mutex (Step);

-- addThreat and getThreat modify the same instance variables
-- therefore they need to be declared mutual exclusive
mutex (addThreat,getThreat);

-- getThreat is used as a ’blocking read’ from the main
-- thread of control of the missile detector
per getThreat => len threats > 0;

per isFinished => not busy

end MissileDetector
� �
C.3.7 The Flare Controller Class�
class FlareController is subclass of GLOBAL, BaseThread

instance variables

-- the left hand-side of the working angle
private aperture : Angle;

-- maintain a link to each dispenser
ranges : map nat to (Angle * Angle) := {|->};
dispensers : map nat to FlareDispenser := {|->};
inv dom ranges = dom dispensers;

-- the relevant events to be treated by this controller
threats : seq of (EventId * MissileType * Angle * Time) := [];

-- the status of the controller
busy : bool := false

operations

public FlareController: Angle * [ThreadDef] ==> FlareController
FlareController (papp, tDef) ==
(aperture := papp;

if tDef <> nil
then (period := tDef.p;

isPeriodic := tDef.isP;
);

BaseThread(self);
);

public addDispenser: FlareDispenser ==> ()
addDispenser (pfldisp) ==

let angle = aperture + pfldisp.GetAngle() in
(dcl id : nat := card dom ranges + 1;
atomic
(ranges := ranges munion

{id |-> mk_(angle, DISPENSER_APERTURE)};
dispensers := dispensers munion {id |-> pfldisp}

);
);

-- get the left hand-side start point and opening angle

– 149 –

public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_(aperture, FLARE_APERTURE);

-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);

-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res);

public isFinished: () ==> ()
isFinished () ==

for all id in set dom dispensers do
dispensers(id).isFinished();

Step: () ==> ()
Step() ==

(if threats <> []
then (def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then dispensers(id).addThreat(evid,pmt,pt);

busy := len threats > 0);
);

sync

-- addThreat and getThreat modify the same instance variables
-- therefore they need to be declared mutual exclusive
mutex (addThreat,getThreat);
mutex (Step);

-- getThreat is used as a ’blocking read’ from the main
-- thread of control of the missile detector
per getThreat => len threats > 0;
per isFinished => len threats = 0 --not busy

end FlareController
� �

C.3.8 The Flare Dispenser Class

�
class FlareDispenser is subclass of GLOBAL, BaseThread

values

responseDB : map MissileType to Plan =
{<MissileA> |-> [mk_(<FlareOneA>,900),

mk_(<FlareTwoA>,500),
mk_(<DoNothingA>,100),
mk_(<FlareOneA>,500)],

<MissileB> |-> [mk_(<FlareTwoB>,500),
mk_(<FlareTwoB>,700)],

<MissileC> |-> [mk_(<FlareOneC>,400),
mk_(<DoNothingC>,100),
mk_(<FlareTwoC>,400),
mk_(<FlareOneC>,500)] };

missilePriority : map MissileType to nat =
{<None> |-> 0,
<MissileA> |-> 1,
<MissileB> |-> 2,
<MissileC> |-> 3 }

types

public Plan = seq of PlanStep;

public PlanStep = FlareType * Time;

instance variables

public curplan : Plan := [];
curprio : nat := 0;
busy : bool := false;
aperture : Angle;
eventid : [EventId];

operations

public FlareDispenser: Angle * [ThreadDef] ==> FlareDispenser
FlareDispenser(ang, tDef) ==
(aperture := ang;

if tDef <> nil
then (period := tDef.p;

isPeriodic := tDef.isP;
);

BaseThread(self);
);

– 151 –

public GetAngle: () ==> nat
GetAngle() ==

return aperture;

public addThreat: EventId * MissileType * Time ==> ()
addThreat (evid, pmt, ptime) ==

if missilePriority(pmt) > curprio
then (dcl newplan : Plan := [],

newtime : Time := ptime;
-- construct an absolute time plan
for mk_(fltp, fltime) in responseDB(pmt) do

(newplan := newplan ˆ [mk_ (fltp, newtime)];
newtime := newtime + fltime);

-- immediately release the first action
def mk_(fltp, fltime) = hd newplan;

t = World‘timerRef.GetTime() in
releaseFlare(evid,fltp,fltime,t);
-- store the rest of the plan
curplan := tl newplan;
eventid := evid;
curprio := missilePriority(pmt);
busy := true)

pre pmt in set dom missilePriority and
pmt in set dom responseDB;

private Step: () ==> ()
Step () ==

(if len curplan > 0
then (dcl curtime : Time := World‘timerRef.GetTime(),

done : bool := false;
while not done do
(dcl first : PlanStep := hd curplan,

next : Plan := tl curplan;
let mk_(fltp, fltime) = first in

if fltime <= curtime
then (releaseFlare(eventid,fltp,fltime,curtime);

curplan := next;
if len next = 0
then (curprio := 0;

done := true;
busy := false))

else done := true)));

private releaseFlare: EventId * FlareType * Time * Time ==> ()
releaseFlare (evid, pfltp, pt1, pt2) ==

World‘env.handleEvent(evid,pfltp,aperture,pt1,pt2);

public isFinished: () ==> ()
isFinished () == skip;

sync

mutex (Step);
mutex (addThreat);
per isFinished => not busy

end FlareDispenser
� �
C.3.9 The TimeStamp Class�
class TimeStamp

values

public stepLength : nat = 1;

instance variables

currentTime : nat := 0;
wakeUpMap : map nat to [nat] := {|->};
barrierCount : nat := 0;
registeredThreads : set of BaseThread := {};
isInitialising : bool := true;
-- singleton instance of class
private static timeStamp : TimeStamp := new TimeStamp();

operations

-- private constructor (singleton pattern)
private TimeStamp : () ==> TimeStamp
TimeStamp() ==

skip;

-- public operation to get the singleton instance
public static GetInstance: () ==> TimeStamp
GetInstance() ==

return timeStamp;

public RegisterThread : BaseThread ==> ()
RegisterThread(t) ==
(barrierCount := barrierCount + 1;
registeredThreads := registeredThreads union {t};
);

public UnRegisterThread : BaseThread ==> ()
UnRegisterThread(t) ==
(barrierCount := barrierCount - 1;
registeredThreads := registeredThreads \ {t};
);

– 153 –

public IsInitialising: () ==> bool
IsInitialising() ==

return isInitialising;

public DoneInitialising: () ==> ()
DoneInitialising() ==
(if isInitialising
then (isInitialising := false;

for all t in set registeredThreads
do

start(t);
);

);

public WaitRelative : nat ==> ()
WaitRelative(val) ==
(WaitAbsolute(currentTime + val);
);

public WaitAbsolute : nat ==> ()
WaitAbsolute(val) == (

AddToWakeUpMap(threadid, val);
-- Last to enter the barrier notifies the rest.
BarrierReached();
-- Wait till time is up
Awake();

);

BarrierReached : () ==> ()
BarrierReached() ==
(while (card dom wakeUpMap = barrierCount)
do
(currentTime := currentTime + stepLength;
let threadSet : set of nat = {th | th in set dom wakeUpMap

& wakeUpMap(th) <> nil and wakeUpMap(th) <= currentTime }
in
for all t in set threadSet
do

wakeUpMap := {t} <-: wakeUpMap;
);

)
post forall x in set rng wakeUpMap & x = nil or x >= currentTime;

AddToWakeUpMap : nat * [nat] ==> ()
AddToWakeUpMap(tId, val) ==

wakeUpMap := wakeUpMap ++ { tId |-> val };

public NotifyThread : nat ==> ()
NotifyThread(tId) ==
wakeUpMap := {tId} <-: wakeUpMap;

public GetTime : () ==> nat
GetTime() ==

return currentTime;

Awake: () ==> ()
Awake() == skip;

public ThreadDone : () ==> ()
ThreadDone() ==

AddToWakeUpMap(threadid, nil);

sync
per Awake => threadid not in set dom wakeUpMap;
mutex (IsInitialising);
mutex (DoneInitialising);
mutex (AddToWakeUpMap);
mutex (NotifyThread);
mutex (BarrierReached);
mutex (AddToWakeUpMap, NotifyThread);
mutex (AddToWakeUpMap, BarrierReached);
mutex (NotifyThread, BarrierReached);
mutex (AddToWakeUpMap, NotifyThread, BarrierReached);

end TimeStamp
� �
C.3.10 The BaseThread Class�
class BaseThread

types

public static ThreadDef ::
p : nat1
isP : bool;

instance variables

protected period : nat1 := 1;
protected isPeriodic : bool := true;

protected registeredSelf : BaseThread;
protected timeStamp : TimeStamp := TimeStamp‘GetInstance();

operations

protected BaseThread : BaseThread ==> BaseThread
BaseThread(t) ==
(registeredSelf:= t;

– 155 –

timeStamp.RegisterThread(registeredSelf);
if(not timeStamp.IsInitialising())
then start(registeredSelf);
);

Step : () ==> ()
Step() ==

is subclass responsibility;

thread

(if isPeriodic
then (while true

do
(Step();
timeStamp.WaitRelative(period)
)

)
else (Step();

timeStamp.WaitRelative(0);
timeStamp.UnRegisterThread(registeredSelf);
);

);

end BaseThread
� �
C.3.11 The IO Class�
class IO

-- Overture STANDARD LIBRARY: INPUT/OUTPUT
-- --
--
-- Standard library for the Overture Interpreter. When the interpreter
-- evaluates the preliminary functions/operations in this file,
-- corresponding internal functions is called instead of issuing a run
-- time error. Signatures should not be changed, as well as name of
-- module (VDM-SL) or class (VDM++). Pre/post conditions is
-- fully user customisable.
-- Dont care’s may NOT be used in the parameter lists.
--
-- The in/out functions will return false if an error occurs. In this
-- case an internal error string will be set (see ’ferror’).

types

public
filedirective = <start>|<append>

functions

-- Write VDM value in ASCII format to std out:
public
writeval[@p]: @p -> bool
writeval(val)==

is not yet specified;

-- Write VDM value in ASCII format to file.
-- fdir = <start> will overwrite existing file,
-- fdir = <append> will append output to the file (created if
-- not existing).
public
fwriteval[@p]:seq1 of char * @p * filedirective -> bool
fwriteval(filename,val,fdir) ==

is not yet specified;

-- Read VDM value in ASCII format from file
public
freadval[@p]:seq1 of char -> bool * [@p]
freadval(f) ==

is not yet specified
post let mk_(b,t) = RESULT in not b => t = nil;

operations

-- Write text to std out. Surrounding double quotes will be stripped,
-- backslashed characters should be interpreted.
public
echo: seq of char ==> bool
echo(text) ==

fecho ("",text,nil);

-- Write text to file like ’echo’
public
fecho: seq of char * seq of char * [filedirective] ==> bool
fecho (filename,text,fdir) ==

is not yet specified
pre filename = "" <=> fdir = nil;

-- The in/out functions will return false if an error occur. In this
-- case an internal error string will be set. ’ferror’ returns this
-- string and set it to "".
public
ferror:() ==> seq of char
ferror () ==

is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static print: ? ==> ()

– 157 –

print(arg) ==
is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static printf: seq of char * seq of ? ==> ()
printf(format, args) ==

is not yet specified;

end IO
� �
C.4 Real-Time Concurrent VDM-RT Model for Counter Mea-

sures System

C.4.1 The CM Class�
system CM

instance variables

-- cpu to deploy sensor 1 and 2
cpu1 : CPU := new CPU (<FCFS>,1E6);

-- cpu to deploy sensor 3 and 4
cpu2 : CPU := new CPU (<FCFS>,1E6);

-- cpu to deploy the MissileDetector
-- and the FlareControllers
cpu3 : CPU := new CPU (<FP>,1E9);

-- cpus for the flare dispensers
cpu4 : CPU := new CPU (<FCFS>,1E8);
cpu5 : CPU := new CPU (<FCFS>,1E8);
cpu6 : CPU := new CPU (<FCFS>,1E8);

-- bus to connect sensors 1 and 2 to the missile detector
bus1 : BUS := new BUS (<FCFS>,1E3,{cpu1,cpu3});

-- bus to connect sensors 3 and 4 to the missile detector
bus2 : BUS := new BUS (<FCFS>,1E3,{cpu2,cpu3});

-- bus to connect flare controllers to the dispensers
bus3 : BUS := new BUS (<FCFS>,1E3,{cpu3,cpu4,cpu5,cpu6});

-- maintain a link to the detector
public static detector : MissileDetector := new MissileDetector(nil);

public static sensor0 : Sensor := new Sensor(detector,0);
public static sensor1 : Sensor := new Sensor(detector,90);
public static sensor2 : Sensor := new Sensor(detector,180);
public static sensor3 : Sensor := new Sensor(detector,270);

public static controller0 : FlareController := new FlareController(0, nil);
public static controller1 : FlareController := new FlareController(120, nil);
public static controller2 : FlareController := new FlareController(240, nil);

public static dispenser0 : FlareDispenser := new FlareDispenser(0,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser1 : FlareDispenser := new FlareDispenser(30,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser2 : FlareDispenser := new FlareDispenser(60,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser3 : FlareDispenser := new FlareDispenser(90,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser4 : FlareDispenser := new FlareDispenser(0,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser5 : FlareDispenser := new FlareDispenser(30,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser6 : FlareDispenser := new FlareDispenser(60,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser7 : FlareDispenser := new FlareDispenser(90,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser8 : FlareDispenser := new FlareDispenser(0,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser9 : FlareDispenser := new FlareDispenser(30,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser10 : FlareDispenser := new FlareDispenser(60,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

public static dispenser11 : FlareDispenser := new FlareDispenser(90,
mk_BaseRTThread‘ThreadDef(1000E6,true,0,0,0));

operations

public CM: () ==> CM
CM () ==

(cpu3.deploy(detector);
-- cpu3.setPriority(MissileDetector‘addThreat,100);

-- set-up sensor 0 and 1
cpu1.deploy(sensor0);

-- cpu1.setPriority(Sensor‘trip,100);
cpu1.deploy(sensor1);

-- set-up sensor 2 and 3
cpu2.deploy(sensor2);

-- cpu2.setPriority(Sensor‘trip,100);

– 159 –

cpu2.deploy(sensor3);

-- add the first controller with four dispensers
cpu3.deploy(controller0);

-- cpu3.setPriority(FlareController‘addThreat,80);
-- add the dispensers to the controller
cpu4.deploy(dispenser0);

-- cpu4.setPriority(FlareDispenser‘addThreat,100);
-- cpu4.setPriority(FlareDispenser‘evalQueue,80);

cpu4.deploy(dispenser1);
cpu4.deploy(dispenser2);
cpu4.deploy(dispenser3);

-- add the second controller with four dispensers
cpu3.deploy(controller1);
-- add the dispensers to the controller
cpu5.deploy(dispenser4);

-- cpu5.setPriority(FlareDispenser‘addThreat,100);
-- cpu5.setPriority(FlareDispenser‘evalQueue,80);

cpu5.deploy(dispenser5);
cpu5.deploy(dispenser6);
cpu5.deploy(dispenser7);

-- add the third controller with four dispensers
cpu3.deploy(controller2);
-- add the dispensers to the controller
cpu6.deploy(dispenser8);

-- cpu6.setPriority(FlareDispenser‘addThreat,100);
-- cpu6.setPriority(FlareDispenser‘evalQueue,80);

cpu6.deploy(dispenser9);
cpu6.deploy(dispenser10);
cpu6.deploy(dispenser11);
)

end CM
� �
C.4.2 The World Class�
class World

instance variables

-- maintain a link to the environment
public static timerRef : RTTimeStamp := RTTimeStamp‘GetInstance();
public static env : [Environment] := nil;

operations

public World: () ==> World

World () ==
(-- set-up the sensors
env := new Environment("scenario.txt",

mk_BaseRTThread‘ThreadDef(1000E6,true,10,900,0));
env.addSensor(CM‘sensor0);
env.addSensor(CM‘sensor1);
env.addSensor(CM‘sensor2);
env.addSensor(CM‘sensor3);

-- add the first controller with four dispensers
CM‘controller0.addDispenser(CM‘dispenser0);
CM‘controller0.addDispenser(CM‘dispenser1);
CM‘controller0.addDispenser(CM‘dispenser2);
CM‘controller0.addDispenser(CM‘dispenser3);
CM‘detector.addController(CM‘controller0);

-- add the second controller with four dispensers
CM‘controller1.addDispenser(CM‘dispenser4);
CM‘controller1.addDispenser(CM‘dispenser5);
CM‘controller1.addDispenser(CM‘dispenser6);
CM‘controller1.addDispenser(CM‘dispenser7);
CM‘detector.addController(CM‘controller1);

-- add the third controller with four dispensers
CM‘controller2.addDispenser(CM‘dispenser8);
CM‘controller2.addDispenser(CM‘dispenser9);
CM‘controller2.addDispenser(CM‘dispenser10);
CM‘controller2.addDispenser(CM‘dispenser11);
CM‘detector.addController(CM‘controller2);
);

-- the run function blocks the user-interface thread
-- until all missiles in the file have been processed
public Run: () ==> ()
Run () ==

(-- start the environment
timerRef.DoneInitialising();
-- wait for the environment to handle all input
env.isFinished();
-- wait for the missile detector to finish
CM‘detector.isFinished();
-- print the result
env.showResult())

end World
� �
C.4.3 The Global Class�
class GLOBAL

– 161 –

values

public SENSOR_APERTURE = 90;
public FLARE_APERTURE = 120;
public DISPENSER_APERTURE = 30

types

-- there are three different types of missiles
public MissileType = <MissileA> | <MissileB> | <MissileC>;

-- there are nine different flare types, three per missile
public FlareType =

<FlareOneA> | <FlareTwoA> | <DoNothingA> |
<FlareOneB> | <FlareTwoB> | <DoNothingB> |
<FlareOneC> | <FlareTwoC> | <DoNothingC>;

-- the angle at which the missile is incoming
public Angle = nat
inv num == num <= 360;

public Time = nat

operations

public canObserve: Angle * Angle * Angle ==> bool
canObserve (pangle, pleft, psize) ==

def pright = (pleft + psize) mod 360 in
if pright < pleft
-- check between [0,pright> and [pleft,360>
then return (pangle < pright or pangle >= pleft)
-- check between [pleft, pright>
else return (pangle >= pleft and pangle < pright);

public getAperture: () ==> Angle * Angle
getAperture () == is subclass responsibility;

end GLOBAL
� �
C.4.4 The Environment Class�
class Environment is subclass of GLOBAL, BaseRTThread

types

public inline = EventId * MissileType * Angle * Time;
public outline = EventId * FlareType * Angle * nat * Time

instance variables

-- access to the VDMTools stdio
io : IO := new IO();

-- the input file to process
inlines : seq of inline := [];

-- the output file to print
outlines : seq of outline := [];

-- maintain a link to all sensors
ranges : map nat to (Angle * Angle) := {|->};
sensors : map nat to Sensor := {|->};
inv dom ranges = dom sensors;

busy : bool := true;

operations

public Environment: seq of char * [ThreadDef] ==> Environment
Environment (fname, tDef) ==
(def mk_ (-,input) = io.freadval[seq of inline](fname) in

inlines := input;

if tDef <> nil
then (period := tDef.p;

jitter := tDef.j;
delay := tDef.d;
offset := tDef.o;
);

BaseRTThread(self);
);

public addSensor: Sensor ==> ()
addSensor (psens) ==

duration (0)
(dcl id : nat := card dom ranges + 1;
atomic (
ranges := ranges munion {id |-> psens.getAperture()};
sensors := sensors munion {id |-> psens}

)
);

private createSignal: () ==> ()
createSignal () ==

duration (0)
(if len inlines > 0
then (dcl curtime : Time := time, done : bool := false;

while not done do
def mk_ (eventid, pmt, pa, pt) = hd inlines in

– 163 –

if pt <= curtime
then (for all id in set dom ranges do

def mk_(papplhs,pappsize) = ranges(id) in
if canObserve(pa,papplhs,pappsize)
then sensors(id).trip(eventid,pmt,pa);

inlines := tl inlines;
done := len inlines = 0)

else done := true)
else busy := false);

public handleEvent: EventId * FlareType * Angle * Time * Time ==> ()
handleEvent (evid,pfltp,angle,pt1,pt2) ==

duration (0)
(outlines := outlines ˆ [mk_ (evid,pfltp,angle,pt1,pt2)]);

public showResult: () ==> ()
showResult () ==

def - = io.writeval[seq of outline](outlines) in skip;

public isFinished : () ==> ()
isFinished () == skip;

public GetAndPurgeOutlines: () ==> seq of outline
GetAndPurgeOutlines() ==

let res = outlines
in

(outlines := [];
return res);

public Step : () ==> ()
Step() ==
(createSignal();
);

sync
mutex (handleEvent);
mutex (createSignal);
per isFinished => not busy;

end Environment
� �
C.4.5 The Sensor Class�
class Sensor is subclass of GLOBAL

instance variables

-- the missile detector this sensor is connected to
private detector : MissileDetector;

-- the left hand-side of the viewing angle of the sensor
private aperture : Angle;

operations

public Sensor: MissileDetector * Angle ==> Sensor
Sensor (pmd, psa) == (detector := pmd; aperture := psa);

-- get the left hand-side start point and opening angle
public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_ (aperture, SENSOR_APERTURE);

-- trip is called asynchronously from the environment to
-- signal an event. the sensor triggers if the event is
-- in the field of view. the event is stored in the
-- missile detector for further processing
async public trip: MissileType * Angle ==> ()
trip (pmt, pa) ==

-- log and time stamp the observed threat
detector.addThreat(pmt,pa,time)

pre canObserve(pa, aperture, SENSOR_APERTURE)

end Sensor
� �
C.4.6 The Missile Detector Class�
class MissileDetector is subclass of GLOBAL, BaseRTThread

-- the primary task of the MissileDetector is to
-- collect all sensor data and dispatch each event
-- to the appropriate FlareController

instance variables

-- maintain a link to each controller
ranges : map nat to (Angle * Angle) := {|->};
controllers : map nat to FlareController := {|->};
inv dom ranges = dom controllers;

-- collects the observations from all attached sensors
threats : seq of (EventId * MissileType * Angle * Time) := [];

-- status of the missile detector
busy : bool := false

operations

public MissileDetector: [ThreadDef] ==> MissileDetector

– 165 –

MissileDetector(tDef)==
(if tDef <> nil
then (period := tDef.p;

jitter := tDef.j;
delay := tDef.d;
offset := tDef.o;
);

BaseRTThread(self);
);

-- addController is only used to instantiate the model
public addController: FlareController ==> ()
addController (pctrl) ==

(dcl nid : nat := card dom ranges + 1;
atomic
(ranges := ranges munion {nid |-> pctrl.getAperture()};
controllers := controllers munion {nid |-> pctrl}
);

);

-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead.
async public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);

-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res);

public isFinished: () ==> ()
isFinished () ==

for all id in set dom controllers do
controllers(id).isFinished();

Step: () ==> ()
Step() ==
(if threats <> []
then (def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then controllers(id).addThreat(evid,pmt,pa,pt);

busy := len threats > 0);
);

sync

-- addThreat and getThreat modify the same instance variables
-- therefore they need to be declared mutual exclusive
mutex (addThreat,getThreat);

-- getThreat is used as a ’blocking read’ from the main
-- thread of control of the missile detector
per getThreat => len threats > 0;
per isFinished => not busy

end MissileDetector
� �
C.4.7 The Flare Controller Class�
class FlareController is subclass of GLOBAL, BaseRTThread

instance variables

-- the left hand-side of the working angle
private aperture : Angle;

-- maintain a link to each dispenser
ranges : map nat to (Angle * Angle) := {|->};
dispensers : map nat to FlareDispenser := {|->};
inv dom ranges = dom dispensers;

-- the relevant events to be treated by this controller
threats : seq of (EventId * MissileType * Angle * Time) := [];

-- the status of the controller
busy : bool := false

operations

public FlareController: Angle * [ThreadDef] ==> FlareController
FlareController (papp, tDef) ==
(aperture := papp;

if tDef <> nil
then (period := tDef.p;

jitter := tDef.j;
delay := tDef.d;
offset := tDef.o;
);

BaseRTThread(self);
);

public addDispenser: FlareDispenser ==> ()

– 167 –

addDispenser (pfldisp) ==
let angle = aperture + pfldisp.GetAngle() in

(dcl id : nat := card dom ranges + 1;
atomic
(ranges := ranges munion

{id |-> mk_(angle, DISPENSER_APERTURE)};
dispensers := dispensers munion {id |-> pfldisp}

);
start (pfldisp));

-- get the left hand-side start point and opening angle
public getAperture: () ==> GLOBAL‘Angle * GLOBAL‘Angle
getAperture () == return mk_(aperture, FLARE_APERTURE);

-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead
async public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==

(threats := threats ˆ [mk_ (evid,pmt,pa,pt)];
busy := true);

-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==

(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res);

public isFinished: () ==> ()
isFinished () ==

for all id in set dom dispensers do
dispensers(id).isFinished();

Step: () ==> ()
Step() ==

(if threats <> []
then (def mk_ (evid,pmt, pa, pt) = getThreat() in

for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in

if canObserve(pa, papplhs, pappsize)
then dispensers(id).addThreat(evid,pmt,pt);

busy := len threats > 0;
);

);

sync

-- addThreat and getThreat modify the same instance variables
-- therefore they need to be declared mutual exclusive
mutex (addThreat,getThreat);

-- getThreat is used as a ’blocking read’ from the main
-- thread of control of the missile detector
per getThreat => len threats > 0;
per isFinished => not busy

end FlareController
� �
C.4.8 The Flare Dispenser Class�
class FlareDispenser is subclass of GLOBAL, BaseRTThread

values

responseDB : map MissileType to Plan =
{<MissileA> |-> [mk_(<FlareOneA>,900),

mk_(<FlareTwoA>,500),
mk_(<DoNothingA>,100),
mk_(<FlareOneA>,500)],

<MissileB> |-> [mk_(<FlareTwoB>,500),
mk_(<FlareTwoB>,700)],

<MissileC> |-> [mk_(<FlareOneC>,400),
mk_(<DoNothingC>,100),
mk_(<FlareTwoC>,400),
mk_(<FlareOneC>,500)] };

missilePriority : map MissileType to nat =
{<MissileA> |-> 1,
<MissileB> |-> 2,
<MissileC> |-> 3 }

types

public Plan = seq of PlanStep;

public PlanStep = FlareType * Time;

instance variables

public curplan : Plan := [];
curprio : nat := 0;
busy : bool := false;
aparature : Angle;
eventid : [EventId];

operations

public FlareDispenser: Angle * [ThreadDef] ==> FlareDispenser
FlareDispenser(ang, tDef) ==

– 169 –

(aparature := ang;

if tDef <> nil
then (period := tDef.p;

jitter := tDef.j;
delay := tDef.d;
offset := tDef.o;
);

BaseRTThread(self);
);

public GetAngle: () ==> nat
GetAngle() ==

return aparature;

async public addThreat: EventId * MissileType * Time ==> ()
addThreat (evid, pmt, ptime) ==

if missilePriority(pmt) > curprio
then (dcl newplan : Plan := [],

newtime : Time := ptime;
-- construct an absolute time plan
for mk_(fltp, fltime) in responseDB(pmt) do

(newplan := newplan ˆ [mk_ (fltp, newtime)];
newtime := newtime + fltime);

-- immediately release the first action
def mk_(fltp, fltime) = hd newplan in

releaseFlare(evid,fltp,fltime,time);
-- store the rest of the plan
curplan := tl newplan;
eventid := evid;
curprio := missilePriority(pmt);
busy := true)

pre pmt in set dom missilePriority and
pmt in set dom responseDB;

async Step: () ==> ()
Step () ==

cycles (1E5)
(if len curplan > 0
then (dcl curtime : Time := time, done : bool := false;

while not done do
(dcl first : PlanStep := hd curplan,

next : Plan := tl curplan;
let mk_(fltp, fltime) = first in

if fltime <= curtime
then (releaseFlare(eventid,fltp,fltime,curtime);

curplan := next;
if len next = 0
then (curprio := 0;

done := true;
busy := false))

else done := true)));

private releaseFlare: EventId * FlareType * Time * Time ==> ()
releaseFlare (evid, pfltp, pt1, pt2) ==

World‘env.handleEvent(evid,pfltp,aparature,pt1,pt2);

public isFinished: () ==> ()
isFinished () == skip

sync
mutex (addThreat,Step);
per isFinished => not busy;

end FlareDispenser
� �
C.4.9 The RTTimeStamp Class�
class RTTimeStamp

instance variables

registeredThreads : set of BaseRTThread := {};
isInitialising : bool := true;
-- singleton instance of class
private static rtTimeStamp : RTTimeStamp := new RTTimeStamp();

operations

-- private constructor (singleton pattern)
private RTTimeStamp : () ==> RTTimeStamp
RTTimeStamp() ==

skip;

-- public operation to get the singleton instance
public static GetInstance: () ==> RTTimeStamp
GetInstance() ==

return rtTimeStamp;

public RegisterThread : BaseRTThread ==> ()
RegisterThread(t) ==
(registeredThreads := registeredThreads union {t};
);

public UnRegisterThread : BaseRTThread ==> ()
UnRegisterThread(t) ==
(registeredThreads := registeredThreads \ {t};
);

public IsInitialising: () ==> bool

– 171 –

IsInitialising() ==
return isInitialising;

public DoneInitialising: () ==> ()
DoneInitialising() ==
(if isInitialising
then (isInitialising := false;

for all t in set registeredThreads
do

start(t);
);

);

sync
mutex (RegisterThread);
mutex (UnRegisterThread);
mutex (RegisterThread, UnRegisterThread);
mutex (IsInitialising);
mutex (DoneInitialising);

end RTTimeStamp
� �
C.4.10 The BaseRTThread Class�
class BaseRTThread

types

public static ThreadDef ::
p : nat1
isP : bool
j : nat
d : nat
o : nat;

instance variables

protected period : nat1 := 1000E6;
protected isPeriodic : bool := true;
protected jitter : nat := 0;
protected delay : nat := 0;
protected offset : nat := 0;

protected registeredSelf : BaseRTThread;
protected timeStamp : RTTimeStamp := RTTimeStamp‘GetInstance();

operations

protected BaseRTThread : BaseRTThread ==> BaseRTThread

BaseRTThread(t) ==
(registeredSelf := t;
timeStamp.RegisterThread(registeredSelf);
if(not timeStamp.IsInitialising())
then start(registeredSelf);
);

Step : () ==> ()
Step() ==

is subclass responsibility;

thread

periodic(period, jitter, delay, offset)(Step);

end BaseRTThread
� �
C.4.11 The IO Class�
class IO

-- Overture STANDARD LIBRARY: INPUT/OUTPUT
-- --
--
-- Standard library for the Overture Interpreter. When the interpreter
-- evaluates the preliminary functions/operations in this file,
-- corresponding internal functions is called instead of issuing a run
-- time error. Signatures should not be changed, as well as name of
-- module (VDM-SL) or class (VDM++). Pre/post conditions is
-- fully user customisable.
-- Dont care’s may NOT be used in the parameter lists.
--
-- The in/out functions will return false if an error occurs. In this
-- case an internal error string will be set (see ’ferror’).

types

public
filedirective = <start>|<append>

functions

-- Write VDM value in ASCII format to std out:
public
writeval[@p]: @p -> bool
writeval(val)==

is not yet specified;

-- Write VDM value in ASCII format to file.

– 173 –

-- fdir = <start> will overwrite existing file,
-- fdir = <append> will append output to the file (created if
-- not existing).
public
fwriteval[@p]:seq1 of char * @p * filedirective -> bool
fwriteval(filename,val,fdir) ==

is not yet specified;

-- Read VDM value in ASCII format from file
public
freadval[@p]:seq1 of char -> bool * [@p]
freadval(f) ==

is not yet specified
post let mk_(b,t) = RESULT in not b => t = nil;

operations

-- Write text to std out. Surrounding double quotes will be stripped,
-- backslashed characters should be interpreted.
public
echo: seq of char ==> bool
echo(text) ==

fecho ("",text,nil);

-- Write text to file like ’echo’
public
fecho: seq of char * seq of char * [filedirective] ==> bool
fecho (filename,text,fdir) ==

is not yet specified
pre filename = "" <=> fdir = nil;

-- The in/out functions will return false if an error occur. In this
-- case an internal error string will be set. ’ferror’ returns this
-- string and set it to "".
public
ferror:() ==> seq of char
ferror () ==

is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static print: ? ==> ()
print(arg) ==

is not yet specified;

-- New simplified format printing operations
-- The questionmark in the signature simply means any type
public static printf: seq of char * seq of ? ==> ()
printf(format, args) ==

is not yet specified;

end IO
� �

